

GM 14-24

CIVIL AVIATION AUTHORITY OF BANGLADESH

Guidance Manual

Surface Movement Guidance and Control System (SMGCS)

AERODROME STANDARD DIVISION

GM 14-24

CIVIL AVIATATION AUTHORITY OF BANGLADESH

Guidance Manual on

Surface Movement Guidance and Control System (SMGCS)

Version-2.0

12 June 2024

Aerodrome Standard Division

AMENDMENTS

RECORD OF AMENDMENTS AND CORRIGENDA

	AME	NDMENTS				COR	RIGENDA	
No.	Date applicable	Date entered	Entered by		No.	Date of issue	Date entered	Entered By
	· · · · · · · · · · · · · · · · · · ·							
				-				
				-				
				-				
				-				
				-				

TABLE OF CONTENTS

Chapter 1	5
Definitions	5
Chapter 2	7
Purpose and Scope	7
Chapter 3	8
Applications/ Regulations	8
Chapter 4	9
DESIGNING AN SMGC SYSTEM FOR AN AERODROME	9
Chapter 5	
FUNCTIONS AND RESPONSIBILITIES	24
Chapter 6	
PROCEDURES	
Chapter 7	
LOW VISIBILITY OPERATIONS	49
Chapter 8	
HIGH TRAFFIC VOLUME OPERATIONS	
Chapter 9	
RUNWAY PROTECTION MEASURES	
Chapter 10	
APRON MANAGEMENT SERVICE)	72
Chapter 11	
TRAINING	79
Chapter 12	
MISCLLANEOUS	
APPENDIX A	
APPENDIX B	86
APPENDIX C	

FOREWORD

In exercise of the powers conferred by the Section 14 of Civil Aviation Act 2017, the Chairman, Civil Aviation authority of Bangladesh has promulgated ANO-14 Vol-I by transposing the Provisions of ICAO Annex 14 Vol-1.as specific operating regulations for the Aerodrome Operators, operating in Bangladesh.

An Aerodrome Operator is expected to comply with the Regulations of the ANO-14 Vol-I. There may be circumstances where compliance of requirements by the Aerodrome Operator becomes difficult because of constraints of trained manpower, training facilities and/or other administrative formalities. These situations require CAAB to establish subject specific guidance manuals.

Provision 9.8 of ANO-14 Vol-I requires that Aerodrome Operator shall provide a surface movement guidance and control system (SMGCS) at an aerodrome.

This GM has been derived from the ANO-14 VOL-I, Doc 9774; Annex 15; Cir 355; Doc 9476 and Doc 9830. It provides guidance to the aerodrome operators in developing system to support aircraft operations in order to maintain required capacity and safety levels, specially in low visibility and/ or increasing Traffic Density conditions. This GM is expected to provide adequate capacity and safety in relation to specific weather conditions, traffic density and aerodrome layout by making use of latest available technologies and high level of integration between various functionalities.

It is expected that the concerned Aerodrome Operator will take this GM as a reference/guidance material in order to comply with the required regulations for the implementation of SMGCS at the aerodrome.

The Aerodrome Operator is to ensure that all those involved in the implementation of SMGCS at the aerodrome are aware of context of this Guidance Manual.

This Guidance Manual is issued under the authority of the Chairman of Civil Aviation Authority, Bangladesh and will become effective on the date mentioned in the document and also will supersede the Aerodrome Advisory Circular (AC (AD) No-06) issued on 16 June 2011 on the same subject.

Air Vice Marshal M Mafidur Rahman BBP, BSP, BUP, ndu, afwc, psc Chairman Civil Aviation Authority of Bangladesh

Chapter 1

Definitions:

Advanced surface movement guidance and control system (A-SMGCS). A system providing routing, guidance and surveillance for the control of aircraft and vehicles in order to maintain the declared surface movement rate under all weather conditions within the aerodrome visibility operational level (AVOL) while maintaining the required level of safety.

Aerodrome. A defined area on land or water (including any buildings, installations and equipment) intended to be used either wholly or in part for the arrival, departure and surface movement of aircraft.

Aerodrome visibility operational level (AVOL). The minimum visibility at or above which the declared movement rate can be sustained.

"Aerodrome Operator" means in relation to certified or licensed aerodrome, as appropriate, the aerodrome certificate or license holder;

Alert. An indication of an existing or pending situation during aerodrome operations, or an indication of an abnormal A-SMGCS operation, that requires attention and/or action.

Apron. A defined area, on a land aerodrome, intended to accommodate aircraft for purposes of loading or unloading passengers, mail or cargo, fuelling, parking or maintenance.

Apron management service. A service provided to regulate the activities and the movement of aircraft and vehicles on an apron.

A-SMGCS capacity. The maximum number of simultaneous movements of aircraft and vehicles that the system can safely support with an acceptable delay commensurate with the runway and taxiway capacity at a particular aerodrome.

Conflict. A situation where there is a risk for collision between aircraft and/or vehicles.

Identification. The correlation of a known aircraft or vehicle call sign with the displayed target of that aircraft or vehicle on the display of the surveillance system.

Incursion. Any occurrence at an aerodrome involving the incorrect presence of an aircraft, vehicle or person on the protected areas of a surface designated for the landing, take-off, taxiing and parking of aircraft.

Manoeuvring area. That part of an aerodrome to be used for the take-off, landing and taxiing of aircraft, excluding aprons.

Movement area. That part of an aerodrome to be used for the take-off, landing and taxiing of aircraft, consisting of the manoeuvring area and apron(s).

Note.—*For A-SMGCS, the movement area does not include passive stands, empty stands and those areas of the apron(s) that are exclusively designated to vehicle movements.*

Obstacle. All fixed (whether temporary or permanent) and mobile objects, or parts thereof, that:

12 June 2024

- a) are located on an area intended for the surface movement of aircraft; or
- b) extend above a defined surface intended to protect aircraft in flight; or
- c) stand outside those defined surfaces and that have been assessed as being a hazard to air navigation.

Reversion time. Maximum time for reversion to manual light control to be completed.

Road. An established surface route on the movement area meant for the exclusive use of vehicles.

Route. A track from a defined starting point to a defined end point on the movement area.

Runway incursion. Any occurrence at an aerodrome involving the incorrect presence of an aircraft, vehicle or person on the protected area of a surface designated for the landing and take-off of aircraft.

Stand. A designated area on an apron intended to be used for the parking of an aircraft. Stands can be classified as:

a) active stand — a stand that is occupied by a stationary aircraft with engines operating, or on which an aircraft is moving, or that is being approached by an aircraft;

b) passive stand — a stand that is occupied by a stationary aircraft with engines not operating; or

c) empty stand — a stand that is vacant and not being approached by an aircraft.

Surveillance. A function of the system which provides identification and accurate position information on aircraft, vehicles and obstacles within the designated area.

System accuracy. A degree of conformance between the estimated or measured value and the true value.

Note.—*For A-SMGCS, this includes the position and the speed.*

System availability. The ability of an A-SMGCS to perform a required function at the initiation of the intended operation within an area covered by the A-SMGCS.

System continuity. The ability of an A-SMGCS to perform its required function without non-scheduled interruption during the intended operation within an area covered by the A-SMGCS. *System integrity.* System integrity relates to the trust which can be placed in the correctness of the information provided by an A-SMGCS. This includes the ability of an A-SMGCS to provide timely and valid alerts to the user(s) when the A-SMGCS must not be used for the intended operation.

System reliability. The ability of an A-SMGCS to perform a required function under given conditions for a given time interval.

Target. An aircraft, vehicle or obstacle that is displayed on a surveillance display.

Target level of safety (TLS). The probability of an accident (fatal or hull loss) during aircraft movement on the aerodrome

Chapter 2.

Purpose and Scope

2.1 The purpose of this GM is to provide guidance to the aerodrome operators in developing system to support aircraft operations in order to maintain required capacity and safety levels, specially in low visibility and/ or increasing Traffic Density conditions. This GM is expected to provide adequate capacity and safety in relation to specific weather conditions, traffic density and aerodrome layout by making use of latest available technologies and high level of integration between various functionalities. (Ref: Doc 9476, Doc 9157 Part 4 & Doc 9830).

2.2 This G M provides general guidance on requirement, application process and responsibilities of aerodrome operators concerning surface movement guidance and control system. This GM should be considered in conjunction with other related ICAO documents.

Chapter 3

Applications/ Regulations

3.1 The contents of this GM shall apply to aerodromes where Air Transport operations open to public use is conducted.

3.2 Applicable Regulations:

Ref ANO-14 Vol-I Articles,-

9.8.1 A surface movement guidance and control system (SMGCS) shall be provided at an aerodrome.

9.8.4 An SMGCS shall be designed to assist in the prevention of inadvertent incursions of aircraft and vehicles onto an active runway.

9.8.5 The system shall be designed to assist in the prevention of collisions between aircraft, and between aircraft and vehicles or objects, on any part of the movement area.

9.8.6 Where an SMGCS is provided by selective switching of stop bars and taxiway centre line lights, the following requirements shall be met:

- a) taxiway routes which are indicated by illuminated taxiway centre line lights shall be capable of being terminated by an illuminated stop bar;
- b) the control circuits shall be so arranged that when a stop bar located ahead of an aircraft is illuminated, the appropriate section of taxiway centre line lights beyond it is suppressed; and
- c) the taxiway centre line lights are activated ahead of an aircraft when the stop bar is suppressed.

Note:

- i) If necessary, a control should be provided, permitting air traffic controllers to override the system at their discretion and to deactivate a route which crosses an operational runway;
- ii) System faults or incorrect operation of the system should be indicated by a visual monitor on the control panel.

9.8.7 Surface movement radar for the manoeuvring area shall be provided at an aerodrome intended for use in runway visual range conditions less than a value of 350 m.

9.8.8 Surface movement radar for the manoeuvring area shall be provided at an aerodrome other than that in 9.8.7 when traffic density and operating conditions are such that regularity of traffic flow cannot be maintained by alternative procedures and facilities as assessed by the aerodrome operator.

Chapter 4

DESIGNING AN SMGC SYSTEM FOR AN AERODROME

4.1 VISIBILITY AND TRAFFIC CONDITIONS

The visibility conditions under which the aerodrome operator plans to maintain operations and the traffic density are the two most important factors to be considered when selecting components for a surface movement guidance and control (SMGC) system for an aerodrome. For the purpose of discussing SMGC systems, visibility and traffic conditions have been subdivided and defined according to the terms indicated in Table 4-1. Whenever these terms are used in this manual they have the meanings given to them in Table 4-1.

Table 4-1(Visibility and Traffic Conditions Associated With SMGC Systems--Explanation of Terms) VISIBILITY CONDITIONS

- 1. Visibility sufficient for the pilot to taxi and to avoid collision with other traffic on taxiways and at intersections by visual reference, and for personnel of control units to exercise control over all traffic on the basis of visual surveillance;
- 2. Visibility sufficient for the pilot to taxi and to avoid collision with other traffic on taxiways and at intersections by visual reference, but insufficient for personnel of control units to exercise control over all traffic on the basis of visual surveillance; and
- 3. Visibility: Low visibility operations as per ANO 14 Vol-I.

TRAFFIC DENSITY

(in the mean busy hour as determined by the individual State)

Light	Not greater than 15 movements per runway or typically less than 20 total aerodrome movements;
Medium	Of the order of 16 to 25 movements per runway or typically between 20 to 35 total aerodrome movements; and
Heavy	Of the order of 26 or more movements per runway or typically more than 35 total aerodrome movements.

4.2 BASIC EQUIPMENT REQUIREMENTS

a) The equipment required at a particular aerodrome for provision of an SMGC system will depend both on the density of traffic and the visibility conditions in which the operations should take place. However, the following equipment is fundamental to any SMGC system and should therefore be provided at all aerodromes:

Marking:

- ➤ taxiway centre line
- taxi-holding position
- taxiway intersection
- > apron
- restricted use areas

Lighting:

- ➢ runway edge
- ➢ taxiway edge
- ➢ obstacle lights
- restricted use areas
- mandatory signs, e.g. taxi-holding position, NO ENTRY,STOP
- ➢ information signs, e.g. location and destination
- ➢ aerodrome control service
- ➢ signaling lamp
- radiotelephony equipment.

4.3 BASIC PROCEDURAL/ ADMINISTRATION REQUIREMENTS

4.3.1 a) Procedures are an important and integral part of an SMGC system and they are implemented partly by the aerodrome operator, partly by the air traffic control unit, and partly by the pilot. As in the case of SMGC aids, the procedures to be employed at a particular aerodrome will be dictated by both traffic density and visibility conditions. The following procedures are fundamental to any SMGC system and should therefore be implemented at all aerodromes:

	i)	Aerodrome operator
designation of taxiways		
movement area inspections		
regulation of ground staff conduct on the movement area		
regulation of ground staff radiotelephony procedures		
periodic electrical monitoring of SMGC aids		
initiation of amendment of aerodrome chart as necessary		
apron management		
	ii)	Air traffic services
provision of air traffic control services		
 use of radiotelephony procedures and phraseology 		
use of signaling lamp		
monitoring of SMGC aids		

iii) **Pilot**

- > adherence to ground movement traffic rules and regulations
- > use of radiotelephony procedures and phraseology
 - b) Table 4-2 lists the aids considered appropriate for each of the nine possible combinations of traffic and visibility conditions. It will be observed that the table includes not only the basic aids detailed in 4.2 a) but also the additional aids

needed to ensure safe and expeditious movement of aircraft under different traffic and density conditions.

	Traffic Conditions	-	Light	t	Ν	Mediu	ım	Η	eav	y	
Aid	Visibility Conditions	• 1	2	3	1	2	3	1	2	3	DOCUMENT REFERENCE
Apron markings		x	х	X	х	х	х	х	x	x	ANO 14 Vol-I, Chapter 5; ICAO Aerodrome Design Manual, Part 4, Chapter 2
Runway centre line ma	arking	X	x	x	x	x	x	x	x	x	ANO-14 Vol-I, Chapter 5
Taxiway centre line m	arking	x	X	X	x	x	X	x	x	x	ANO-14 Vol-I, Chapter 5
Taxi-holding position	marking	x	x	x	x	X	x	x	x	X	ANO-14 Vol-I, Chapter 5
Visual aids for denotin	ng restricted use areas	x	x	X	x	X	X	x	x	X	ANO-14 Vol-I, Chapter 7
Runway edge lights		x	X	x	X	x	х	X	x	x	ANO-14 Vol-I, Chapter 5; Aerodrome Design Manual, Part 5, Chapter 3
Taxiway edge lights		X	x	X	x	X	x	x	x	X	ANO-14 Vol-I, Chapter 5; Aerodrome Design Manual, Part 5, Chapter 3
Obstacle lighting		x	x	х	x	X	х	X	X	X	ANO-14 Vol-I, Chapter 6; Aerodrome Design Manual, Part 4, Chapter 1
Signs		X	x	x	x	x	X	X	X	X	ANO-14 Vol-I, Chapter 5; Aerodrome Design Manual, Part 4, Chapter 1
Taxiway intersection r	marking	X	x	X	x	x	X	X	X	x	ANO-14 Vol-I, Chapter 5
Charts (aerodrome, me	ovement, apron)	X	x	X	x	х	X	x	x	x	Annex 4, Chapter 13, 14 and 15
Aerodrome control ser	rvice	X	x	X	х	X	x	x	x	х	Annex 11; ICAO Doc 4444, Chapter 7
2 June 2024							13				

	Traffic Conditions		Lig	ht		Me	dium			Hear	avy
Procedure	Visibility Conditions	1	2	3	1	2	3		1	2	2 3 DOCUMENT REFERENCE
Signalling lamp	Х	X	Х	-	x y		K	X	X	х	ANO-14 Vol-I, Chapter 5
Radiotelephony equipme	ent x	x	х		x y	X 2	K	X	x	x	Annex 11, Chapter 6
Runway guard lights			х		2		K	x x	x	x	ANO-14 Vol-I, Chapter 5

	Traffic Conditions	Lig	ht		Mediu m	1]	Heavy	/	
Aid	Visibility Conditions	1 2	3	1	2	3	1	2	3	DOCUMENT REFERENCE
Electrical monitoring s	ystem for lights	x	х		X	x	х	X	X	ANO-14 Vol-I, Chapter 8; Aerodrome Design Manual, Part 5, Chapter 3
Taxiway centre line lig	hts								x	ANO-14 Vol-I, Chapter 5; Aerodrome Design Manual, Part 5, Chapter 3
Stop bars			x		x	x		x	x	ANO-14 Vol-I, Chapter 5; Aerodrome Design Manual, Part 5, Chapter 3
Selective switching cap line lights	pability for Taxiway Centre					x			X	Aerodrome Design Manual, Part 4, Chapter 10 and Part 5, Chapter 3
Selective switching cap centre line lights	pability for apron Taxiway					х			X	Aerodrome Design Manual, Part 4, Chapter 10 and Part 5, Chapter 3
Surface movement rad	ar (SMR)					x		х	x	Air Traffic Services Planning Manual
Aircraft stand manoeuv	vring guidance lights		х			X			x	ANO-14 Vol-I, Chapter 5
Runway clearance aid			X			х		X	x	ANO-14 Vol-I, Chapter 5
Secondary power supp	ly		x		х	X		X	x	ANO-14 Vol-I, Chapter 8; Aerodrome Design Manual, Part 5, Chapter 2
Visual docking guidan	ce system					X		X	X	ANO-14 Vol-I, Chapter- 5; Aerodrome Design Manual, Part 4, Chapter 12

	Tab	ole	4-3 G	uida	nce	on S	elect	ing SI	MGC	Syst	tem Procedures
	Traffic Conditions		Light	t		Med	ium		Heav	y	
Procedure	Visibility Conditions	1	2	3	1	2	3	1	2	3	DOCUMENT REFERENCE
Aerodrome Authority											
Periodic electrical monitori	ng of SMGC aids	x	x	X	x	X	x	x	x	x	ANO-14 Vol-I Chapter 8 & Chapter 3 of this manual
Designation of taxiways		x	x	X	x	X	x	x	x	x	See Chapter 5 of this manual
Movement area inspections	& reporting	x	х	X	x	X	х	х	x	x	ANO-14 Vol-I, Chapter 2 & Chapter 5 of this manual
Regulation of ground staff movement area	f conduct on the	x	х	x	x	X	х	x	x	X	See Chapter 5 of this manual
Initiation of amendment of a necessary	aerodrome charts as	X	Х	X	x	x	х	х	x	X	See Chapter 8 of this manual
Regulation of ground staff	radiotelephony	x	x	x	X	X	x	X	x	x	Annex 10; ICAO Doc 4444, Chapter- 4
Procedures											
Establishment of standard t	axi routes			х		х	Х	х	x	х	See Chapter 5 & 8 of this manual
Low visibility moveme Measures	ent area protection			x			х			х	See Chapter 7 of this manual
Continual electrical monito	ring of SMGC Aids			x			х			х	ANO-14 Vol-I, Chapter 8 & Chapter 5 of this manual
ATS											

.....

12 June 2024

	Traffic Conditions]	Light		N	Medi	um		Heavy		
Procedure	Visibility Conditions	1	2 3	3	1	2	3	1	2	3	DOCUMENT REFERENCE
Visual monitoring of		Х	X	X	X	X	X	Х	Х	X	Annex 11, Chapter 7 & Chapter 5 of this manual
Use of radiotelepho	ony procedures & Phraseology	x	x	x	х	X	x	x	x	X	Annex 10; Doc 4444, Chapter-12 & the Manual of Radiotelephony

GM-14-24

	Traffic Conditions		Light	ţ		Med	lium		Heav	у	
Procedure	Visibility Conditions	1	2	3	1	2	3	1	2	3	DOCUMENT REFERENCE
Use of signalling lamp)	х	X	x	X	X	х	X	x	2	x Annex 2, Appendix 1
Control of other than manoeuvring area	n aircraft traffic on the	х	Х	x	X	X	х	Х	x	X	x Doc 4444, Chapter 7
Operation of lighting	aids	х	х	x	X	x	х	х	x	y	x Doc 4444
Determination of the t	axiway route to be followed			x		x	х	х	x	2	x Doc 4444, Chapter 7 & Chapter 5 of this manual
Application of sequen	cing procedure			x	X	x	х	х	x	2	x See Chapter 6 of this manual
Initiation & termin visibility P				X			х			X	x Doc 4444, Chapter 7 & Chapter 7 of this manual
Application of separat	tion criteria			x			x			У	x Doc 4444, Chapter 7 & 8 & Chapter 6 of this manual
Continual electrical m	onitoring of SMGC Aids			x			x			У	x Annex 11, Chapter 7 & Chapter 5 of this manual
Monitoring of surface	movement on SMR						х		Х	У	x See Chapter 6 of this manual
Selective switching of	f taxiway centre line Lights						х			У	x Aerodrome Design Manual Part 4 & Doc 4444, Chapter 7
Selective switching of	f stop bars			x		x	х		х	У	x Aerodrome Design Manual Part 4 & Doc 4444, Chapter 7
Adherence to ground regulations	movement traffic rules &	х	X	X	x	X	х	х	x	X	x Annex 2; Doc 4444, Chapter 7
Use of radioteleph phraseology	nony procedures & the	х	Х	X	x	X	х	Х	x	X	x Annex 10, Doc 4444 & Manual of Radiotelephony
Apron Management											

12 June 2024

	Traffic Conditions		Light			Med	ium		Heavy	,	
Procedure	Visibility Conditions	1	2	3	1	2	3	1	2	3	DOCUMENT REFERENCE
Apron regulations	s & procedures	Х	Х	Х	х	Х	Х	Х	Х	х	ANO-14 Vol-I, Chapter 9 & Chapter 10 of this manual
Emergency proceed	dures	х	Х	Х	x	х	х	х	х	х	Chapter 7 & 10 of this manual

Traffic Conditions		-	Light		Medium				Hea		
						vy			110	, cc	
Procedure	Visibility		2		1	2	3	1		3	DOCUMENT REFERENCE
	Conditions	-	3					2			
Communication procedures with ATS		x	х	х	x	X	х	х	X	x	Chapter 6 & 10 of this manual
Stand allocation & information		x	Х	x	x	x	х	Х	x	x	Chapter 10 of this manual
Apron security procedures		x	х	х	x	х	X	Х	x	x	Chapter 10 of this manual
Operating of lighting & docking aids			х			х			x	Chapter 10 of this manual	
Provision of discrete RTF channel						х	х	x	x	Chapter108 of this manual	
Low visibility procedures				х			x			x	Chapter 7 of this manual

c) The table lists the visual docking guidance system as an essential aid for a few combinations of traffic and visibility conditions. A visual docking guidance system may be useful in other situations as well. In evaluating the need for a visual docking guidance system the following factors merit consideration:

- ➤ the number of aircraft using the aircraft stand
- \blacktriangleright weather conditions
- space available on the apron
- > precision required at the parking position
- ➤ availability and cost of alternative means.

d) Signs are a basic aid. They serve an important function in informing a pilot and reducing RTF communications. The number and quality of signs provided at an aerodrome is a variable which is not reflected in the table. As traffic increases or visibility decreases improvements in the signs provided as well as the lighting and electronic aids used for guidance and control are required.

4.4 MATCHING PROCEDURES TO AERODROME CONDITIONS

a) Table 4 - 3 lists the procedures considered appropriate for each of the nine possible combinations of traffic density and visibility conditions. It will be observed that the table includes not only the basic procedures detailed in 4.3.1 a) but also the additional procedures needed to ensure safe and expeditious movement of aircraft under different traffic and visibility conditions.

b) It is to be noted that a separate section of Table 4 -3 has been devoted to apron management procedures. This has been done to conveniently isolate applicable procedures for the case where it is intended to establish a self-contained apron management unit. If no

separate apron management unit is established, responsibility for these procedures will rest, in part with the ATS unit and, in part, with the aerodrome operator.

4.5 REVIEW OF SYSTEM AND IMPROVEMENT

a) Regular reviews of the SMGC system should be carried out to ensure that the system is fulfilling its intended task, and to assist the aerodrome operator in planning ahead for the orderly introduction of a more advanced system and the necessary supporting facilities, as and when warranted. Ideally, a master plan will have been prepared for the aerodrome in the early stages of its development, in which case a review of the system at regular intervals will serve to monitor the development of the aerodrome in relation to the time frame employed in the master plan.

b) In all cases, the SMGC system will need to be reviewed under one or more of the following circumstances:

the volume of traffic increases significantly;

> operations in lower visibility conditions are planned; and

 \succ the aerodrome layout is changed, i.e. new runways, taxiways, or aprons are brought into operation.

- c) It is also conceivable that ATS restructuring of the airspace surrounding the aerodrome, or other external circumstances, may affect the flow of traffic to and from the aerodrome, and consequently the pattern of movements on the runways, thereby influencing the SMGC system requirements.
- d) Apart from traffic movement counts, the extent to which increased traffic volume is causing a deterioration of the effectiveness of the SMGC system may be determined by the appearance of the following symptoms:

i) a marked need for increased vigilance in the visual surveillance of surface traffic movements, generated by the number of movements occurring simultaneously throughout the aerodrome complex;

ii) a marked increase in the loading on the communications channels used for SMGC;

iii) an increase in the number of problems occurring at crossing points and runway/taxi way intersections, requiring intervention by the controller an thereby contributing to the increase in radio communications; and

iv) the occurrence of bottlenecks, congestion and delays in surface traffic movements.

Chapter 5

FUNCTIONS AND RESPONSIBILITIES

5.1 GENERAL

- 5.1.1 In the surface movement guidance and control (SMGC) system, as in any other system, one needs to identify who is responsible for what and when, why and how. Accordingly, this chapter discusses certain important functions and responsibilities of those most involved with surface movement guidance and control, namely:
 - a) Air Traffic Services
 - b) Apron Management Service
 - c) Pilots
 - d) Aerodrome Operator
 - e) Ground Vehicle Drivers.
- 5.1.2 This chapter clearly details the division of responsibilities, provides a brief outline of control functions and emphasizes the need to avoid over control. In addition, some functions such as the use of ground vehicle control, monitoring and maintenance of visual aids are addressed.

5.2 Functions

SMGC systems have four basic functions:

a) *guidance*, which consists of the facilities, information and advice that are necessary to provide continuous, unambiguous and reliable information to pilots of aircraft and drivers of vehicles to keep their aircraft or vehicles on the surfaces and assigned routes intended for their use;

b) *routing*, which is the planning and assignment of a route to individual aircraft and vehicles to provide safe, expeditions and efficient movement from the current position to the intended position;

c) *control*, which is the application of measures to prevent collisions and runway incursions thereby ensuring safe, expeditious and efficient ground movements; and

d) *surveillance*, which provides identification and accurate positional information on aircraft, vehicles and other objects.

5.3 DIVISION OF RESPONSIBILITIES AND THEIR TRANSFER

5.3.1 AIR TRAFFIC SERVICES

a) Use of radiotelephony procedures and phraseology. Radiotelephony will be the primary method of communication between ATS and aircraft, surface vehicles and rescue and fire fighting vehicles operating on the manoeuvring area. It is important that radiotelephony (RTF) communications

be conducted in the standard manner with regard to phraseology, procedures and language. At busy aerodromes the work-load on the controller can be extremely high and SMGC systems should be designed with a view to minimizing the need for RTF communication.

- b) When aircraft and vehicles operate outside the manoeuvring area but under the guidance of an ATS unit it is preferable that detailed written procedures governing their operation be employed.
- c) **Issue of taxi clearance to facilitate SMGC:** The appropriate air traffic service unit will be responsible for the release of departing aircraft in a sequence which will expedite the traffic flow, and for the expeditious routing of arriving aircraft. In good visibility, sequencing can be done by visual observation and radiotelephony. In reduced visibility or where traffic density warrants, more advanced means need to be provided since ATC becomes progressively more involved in guidance and control.
- d) Determination of taxi routes to be followed. ATS and the aerodrome Operator should determine jointly the routings to be taken by aircraft and vehicles. The aim should be to achieve the most expeditious and orderly traffic flow possible. ATC will advise the pilot or vehicle driver as to the particular route to be followed and will, where necessary, resolve conflicts at intersections.
- e) As the bodies responsible for operating the SMGC system, the appropriate ATS unit and the aerodrome operator should be aware of the need to monitor the system and to have any failures rectified as soon as is practicable. This monitoring may take the form of visual surveillance of lights, taking into account reports from pilots, and of electrical monitoring of electrical and electronic components of the system.
- f) Control of traffic other than aircraft on the manoeuvring area: While the principal task of an air traffic controller is the control of aircraft, he/she is also responsible for controlling vehicles. When visibility reduces, it shall be at the discretion of the air traffic controller to restrict movements of vehicles as necessary. The amount of control over the movement of ground vehicles exercised by the aerodrome control service will increase as visibility reduces. With the exception of rescue and fire fighting vehicles responding to an emergency, the controllers should ensure that aircraft receive priority and are not hindered by the movement of vehicles. It is important that the aerodrome operator and the appropriate air traffic control unit be empowered to carry out this task effectively.
- g) **Operation of visual guidance and control aids:** The appropriate aerodrome control service will be responsible for operating the visual components of the control system, including stop bars, taxiway centre line lights and routing designators. That unit will also need to ensure that the lights are illuminated at the appropriate time. With regard to lighting systems installed on the apron, i.e. apron taxiway centre line lights, aircraft stand manoeuvring guidance lights and parking and docking guidance systems, it will be essential at each aerodrome as appropriate to determine which body will be responsible for their operation.
- h) **Division of responsibility between controller and pilot**: Prevention of collision is a joint pilot/ATS responsibility with the controller always responsible for the resolution of intersection conflicts. In the lower visibilities, the over-all responsibility for the avoidance of collision becomes increasingly that of the ATS unit.

i) Initiation and termination of low visibility procedures: It will be the responsibility of the air traffic control unit to initiate procedures appropriate to low visibility operations. To assist in this, advice will be needed from the meteorological office so that advance preparations can be made for low visibility procedures. These preparations may take some time, and should therefore be started in time to complete them before reducing visibility requires other actions such as the application of greater aircraft separation. When the visibility improves, the cancellation of these procedures will take place at the discretion of the air traffic control unit.

j) 5.3.2 APRON MANAGEMENT SERVICE

At some aerodromes, management of traffic on the apron is not the responsibility of the air traffic control unit. At these aerodromes there should be an apron management service responsible for ensuring the safe movement of aircraft on the apron. All rules and regulations applicable to aircraft movements on the apron should be consistent with the rules and regulations applicable to the manoeuvring area and close liaison between the apron management service and ATS unit is essential.

5.3.3 PILOTS

The pilot will respond to the instructions given by the apron management service and the air traffic control unit and follow the designated taxiway route.

5.3.4 AERODROME OPERATOR

a) Movement area inspections: The aerodrome operator will be responsible for conducting frequent inspections of the movement area to ensure that the areas intended for aircraft movement are kept unobstructed and in good repair. It is particularly important that an inspection be completed before the initiation of low visibility procedures as these procedures will, in themselves, prevent such an inspection.

b) The aerodrome operator and ATS will be responsible for the regulation and control, respectively, of ground staff on the movement area. The aerodrome operator will be responsible for ensuring that ground staff are properly trained particularly in RTF and monitored in its use. During low visibility operations, it will be particularly important to restrict the movement of ground staff on the movement area to a minimum.

c) Servicing of SMGC aids: The aerodrome operator will normally be responsible for ensuring that all visual components of the SMGC system are kept serviceable. This will require frequent physical inspections of these visual components.

d) Designation of taxi ways and standard taxi routes: In conjunction with the ATS, the aerodrome operator will be responsible for the designation of taxiways and for the establishment of standard taxi routes applicable to the types of operations expected to take place at the aerodrome. The designation and promulgation of standard routes for taxiing aircraft become particularly important for intended operations at busy aerodromes in low visibility conditions.

e) Low visibility movement area protection measures: It will be the responsibility of the aerodrome operator or other competent authority (if applicable) to ensure that the number of

persons and vehicles authorized visibility is kept to a minimum.

5.3.5 GROUND VEHICLE DRIVERS

Drivers of ground vehicles must comply with aerodrome regulations and ATC instructions. Notwithstanding this, drivers are responsible for exercising due care and attention so as to avoid collisions between their vehicles and aircraft, and between their vehicles and other vehicles.

5.3.6 AVOIDANCE OF OVERCONTROL

a) The surface movement guidance and control system should provide a degree of control which is adequate to meet the needs of pilots and controllers.

b) It is important to ensure that the efficiency of the over-all system is not impaired by the imposition of unnecessary controls and restrictions on pilots and controllers. Pilots and controllers should be allowed to exercise their specific responsibilities when circumstances so permit. When circumstances do not allow this, additional restraints are progressively required to ensure safety of ground movement. It is particularly important that these restraints be removed promptly as conditions improve.

c) With contemporary SMGC systems the traffic capacity may be reduced by the need, in certain circumstances such as during low visibility operations, to exercise high levels of control. Future advances in automated systems may permit a higher degree of control without adverse effect on capacity.

d) Major considerations of ground movement control in low visibility operations should be to:

- avoid traffic conflicts between taxiing aircraft and between an aircraft and a ground vehicle;
- ensure that aircraft or ground vehicles do not enter the ILS critical or sensitive areas at an improper time;
- > ensure that the runway in use is clear when an aircraft is landing or taking off;
- ➤ facilitate taxiing to and from the runway; and
- > maintain the maximum safe capacity of the airport.

e) All aircraft and other vehicles operated on the manoeuvring area of a controlled aerodrome must be subject to aerodrome control, and controlled by radio communications, or as otherwise authorized by prior arrangement. Control may include accompaniment by an appropriate escort who is in direct radio communication with aerodrome control.

f) Control of ground movement of aircraft and vehicles during periods of low visibility should be based on maximum use of procedures and aids which are common for operations in good visibility. It

has been found that, to a certain extent, procedures and aids which facilitate movement on a busy aerodrome will also satisfy the requirements for low visibility operations, and vice versa.

g) In order for ground movement of aircraft and vehicles to take place with efficiency and safety in low visibility, aids must be provided to substitute for the visual information normally available to pilots and controllers for surveillance and guidance information.

h) The primary means of control over ground traffic in low visibility can be procedural, using radio voice communications between aerodrome control and the pilot or vehicle operator, supplemented by visual information in the form of lights, surface markings and signs. Although visual aids and procedures may be adequate for ground movement in low visibility, such operations must be conducted with extra caution. As traffic demand increases, ATC work-load can be minimized by the provision of additional aids.

5.3.7 GROUND MOVEMENT COMMUNICATIONS

The communication aspects of an aerodrome control service fall into three main categories:

- control of air traffic in the circuit and in the approach, landing and departure phases of flight;
- > control of taxiing aircraft and vehicles on the manoeuvring area; and
- acquisition and passing of airways clearances, weather information and other flight data.

5.3.8 At an aerodrome with light traffic one controller may be responsible for all of these duties, using one RTF channel for all purposes. At a large aerodrome with heavy traffic, the aerodrome control service may be shared between a number of controllers and assistants. The increase in traffic demand may also carry an increase in total RTF loading which demands the use of separate channels.

a) In a developing aerodrome or traffic situation the point at which additional control positions need to be introduced may hinge solely upon RTF channel loading, or the decision may be prompted by other factors such as controller work-load generated by the particular mix of traffic, complexity of aerodrome layout or the need to provide a control position which offers a better view of the manoeuvring area. Whether or not the duplication of positions is due to RTF loading, each position should have its own discrete frequency.

b) A typical usage of two RTF channels is to have the service described in 3.4.1 a) on one frequency and 3.4.1 b) and c) on the other; b) and c) subsequently become divided when work-load develops to the point at which another channel is required. In some instances it may become necessary to open an additional frequency or frequencies, during the busy hours of the day and then revert to a more limited communication channel usage in the less busy periods.

c) It is customary for non-aeronautical radio frequencies to be used for communication between ground vehicles and various aerodrome agencies such as contractors, customs, police, airline companies, etc., but it must be ensured that when operating on the movement area use of the non aeronautical frequency does not preclude maintenance of a listening watch on the ground movement control frequency.

d) A spare frequency for use if a normal channel is jammed/overloaded is a highly desirable facility which can, on occasion, save a great deal of trouble and delay.

e) At many aerodromes provision is made for a discrete RTF contact between emergency services vehicles and an aircraft which has landed after declaring an emergency, or in any emergency when the aircraft is on the ground and capable of being manoeuvered. This is of particular significance with large aircraft where it is important for the crews of the emergency vehicles to be aware of the pilot's intentions so that risk to aircraft occupants and to personnel on the emergency vehicles may be minimized. For such a discrete frequency to be of value it is obviously necessary that the users of radiotelephony equipment in these circumstances be able to communicate in a common language. For situations where a common language does not exist, communication between the pilot and the fire service will have to be relayed by ATC.

5.4 ESTABLISHMENT OF STANDARD TAXI ROUTES FOR AIRCRAFT

- 5.4.1 On an aerodrome the movement of taxiing aircraft generally falls into a distinctive pattern in which the major traffic flows are between:
 - runways and aprons
 - aprons and maintenance areas
 - maintenance areas and runways.
- 5.4.2 Where possible, standard taxi routes which are direct, simple and capable of being used in both good and bad visibility (see Chapter 7 for low visibility operations) and which offer minimum conflict with the routes of other aircraft or vehicles should be arranged between these locations. One-way systems should be introduced where this can be done without greatly extending taxiing distances as, among other things, long taxi distances result in higher temperatures for brakes and tires.
- 5.4.3 Care should be taken to ensure that the routes are adequate for the largest aircraft likely to use them, and that aircraft using them do not offer problems of:
 - interference with navigation aids;
 - penetration of the obstacle free zone and, where possible, penetration of other obstacle limitation surfaces;
 - obstruction of radar transmissions;
 - physical obstruction (e.g. inadequate clearance from aircraft holding for takeoff from an intermediate point); or

12 June 2024

➢ jet blast.

5.4.4 Routes will vary according to the runways in use for landing and take-off. A route plan must allow for an orderly transition from one operational mode to another, e.g. following a runway change, and also the aircraft which, after taxiing for take-off, needs to return to the apron.

5.4.5 For aerodromes where standard taxi routes are provided, details of such routes should be published in the appropriate aeronautical information publication and shown on aerodrome charts. Routes should normally be identified by designators. The designators of taxi routes should be distinctively different from those of the runways, taxi ways and instrument departure routes. Where a route includes taxiing between areas under control of ATS and the apron management service, the transition points should be indicated on either the aerodrome chart or ground movement chart.

5.4.6 An established standard taxi route system offers advantages over a random system, in that it increases safety, expedites movement, provides for more confident operation in reduced visibility and decreases the RTF work-load.

5.5 CONTROL OF GROUND VEHICLES

5.5.1 The servicing and maintenance of aircraft and of aerodrome installations inevitably demands the presence of vehicles on the movement area. ANO 14 Vol-I and Annexes 11 require that the movement of persons and vehicles on the movement are shall be controlled or regulated as necessary to avoid hazards to them or to aircraft. The Aerodrome Design Manual (Doc 9157), Part 2, Chapter 4 stresses the importance of planning aerodrome facilities for the maximum segregation of aircraft and vehicular traffic, with airside road systems so designed that critical sections of the movement area for traffic congestion can be by-passed.

5.5.2 The Aerodrome Design Manual, Part 2, also points out the value of airside roads to eliminate, or lessen, the use of runways and taxiways by ground vehicles which need access to the movement area. For example, aerodrome perimeter service roads may provide access to navigation aids, or from one service area to another. An airside road may connect one terminal with another for airline vehicles, baggage trains, etc. Every effort should be made to avoid airside roads crossing runways and taxiways, or affecting the function of navigation aids. If it is necessary for an access road to cross beyond the end of a runway, stopway or clearway, the road should be so located that vehicles traveling on it do not become obstacles to aircraft operations.

5.5.3 On an apron, interaction between aircraft and vehicles is unavoidable, and guidance for drivers is necessary if safe and efficient use is to be made of the available space. Apron safety lines should be provided on a paved apron to define the limits of areas established for use by ground vehicles and other aircraft servicing equipment. These lines should be of a conspicuous colour and should contrast with apron markings for aircraft, i.e. aircraft stand markings. Vehicle crossings from terminal area or airside road to an aircraft stand, and from aircraft stand to aircraft stand, should be delineated by conspicuous painted lines.

5.5.4 Airside route systems for vehicle movement fall into five broad categories:

> roads which are completely segregated from aircraft movements;

- > roads which cross taxiways in maintenance areas but which are segregated from operational aircraft movement;
- routes which cross operational runways, stopways, clearways or taxiways;
- > apron routes; and
- vehicle movement along operational taxiways and runways.

5.5.5 The manoeuvring area should be protected from inadvertent entry by persons and vehicles from air side road, e.g. by signs or traffic lights on access roads. The movement of persons on foot should not be allowed on runways or taxiways unless absolutely necessary.

5.5.6 Where construction or other activity calls for localized free moving traffic, the boundaries of a temporarily closed area should be marked as described in ANO 14 Vol-I, and any movement outside the area should comply with normal aerodrome regulations. (ANO 14 Vol-I ,Chapter 2 stipulates the requirements for promulgating information on the condition of the movement area).

5.5.7 Detailed written procedures particularly for apron activities based on methods other than RTF, should be developed for low visibility operations to ensure safety while maintaining capacity.

5.6 MONITORING

5.6.1 LIGHTING AIDS;

a) Surface movement guidance and control relies heavily upon lights for safe operations in reduced visibility and at night, and it is of vital importance that ATC should be aware of any discrepancies between the lighting selected on the lighting control panel in the control tower and the lights which actually show on the aerodrome surface. Normally in good conditions at night, it is not difficult to see whether the switches operated bring on the appropriate surface lights; the problems arise in reduced visibility when the lights are not visible to the controller.

b) Ideally all lights should be operative but as a guide for maintenance it is considered that not more than 15 per cent of taxiway centre line lights should be inoperative, and two consecutive taxiway centre line lights should not be inoperative. Because of the normally high reliability of aerodrome lighting systems, an electrical monitoring system may not be required, but visual inspection should be carried out with sufficient frequency to ensure adequacy of the taxiway lighting system.

c) In conditions when direct visual appraisal of aerodrome surface lights is not possible, monitoring is usually carried out by:

> checking of power supply and circuit state indicators.

5.6.2 It is important that lighting display panels are so engineered that they constitute effective monitors of surface lighting. Many lighting control panels provide a tell- tale indication only of the 12 June 2024 31

lighting selected and do not indicate whether the lights are actually lit. A feedback mimic may indicate whether a particular group of lights is on or not, but may not reflect individual light failures which could be significant for movement in low visibility. Power supply and circuit state indications can provide information on the percentage of light outage without showing the specific nature of the failures. Problems can arise from failure of lamps to extinguish, as well as from failure to light, on selection. Safe and efficient ground movement in low visibility demands a monitoring system so designed that the controller is quickly aware, and continuously reminded, of any lighting failure which could affect safety or cause taxiing difficulties in the area for which he has responsibility.

Information is available in the Aerodrome Design Manual, Part 5, Electrical Systems, concerning the type of electrical monitoring system which should be installed to verify instantly that all lighting equipment is in good working order. Sample monitor signals to indicate the operational status of an installation are:

➤ installation out of order: tell-tale light off;

- ≻ installation in order: tell-tale light on and steady; and
- > installation faulty when switched on: tell-tale light blinking.

5.6.3 Different blinking frequencies can indicate different degrees of fault and a failure warning is accompanied by a sound alarm

a) The extent and detail of monitoring that can be done in the control tower will depend upon the size and complexity of the lighting system. For an elementary layout full system monitoring might be acceptable in the tower. At a large aerodrome, well equipped for low visibility operations, lighting control and monitoring might need to be concentrated in a technical control room. The panel in the control tower would indicate a fault, the more sophisticated engineer's panel would indicate the precise nature of the fault and this information would be immediately relayed to the appropriate ATS unit.

b) To ensure the integrity of monitoring systems it is desirable that their power supply should be obtained from a separate source. (See also ANO-14 Vol-I, Chapter 8 for specifications regarding the application and characteristics of a secondary power supply.)

5.6.4 NON-VISUAL AIDS;

With the introduction of non-visual aids to SMGC the dependence of ATC upon the correct functioning of the non-visual aids will be such that, as with aerodrome lighting, a monitor system must be provided to indicate any malfunction.

5.7 AERODROME SURFACE INSPECTIONS

5.7.1 FREQUENCY OF INSPECTION;

a) Inspections of the movement area should be regular and frequent. It recommends that the minimum frequency should be as per ANO 14 Vol-I: & GM-14-23)

i) Runways — Four inspections daily as described below:

- Dawn inspection A detailed surface inspection covering the full width of all runways should be undertaken. This should take approximately 15 minutes for each runway (two runs).
- Morning inspection All runways, between aircraft movements when necessary, concentrating on the area between the runway edge lights.
- > Afternoon inspection Same as the morning inspection.
- Dusk inspection This should cover all runways. It is designed to bridge the gap in runway inspections when the lighting inspection is not required until late in the evening, and should cover the whole runway surface.
- *ii)* Taxiways Daily for those in normal regular use.
- *iii)* Aprons Daily.

iv) Grass areas — Those areas that may be required to sustain aircraft should be inspected as frequently as the adjacent paved areas. Other grass areas should be inspected at intervals suitable to observe any deterioration of the surface.

Chapter 6

PROCEDURES

6.1 INTRODUCTION

- 6.1.1 The basis for all operations on the manoeuvring area of an aerodrome is contained in ANO-14 Vol-I & Annexes 2, 11 and the PANS-ATM. These documents prescribe rules and requirements for the operation of aircraft and vehicles on the manoeuvring area which, if meticulously observed, would ensure the safety of operation on the manoeuvring area.
- 6.1.2 Nevertheless, as traffic demand on an aerodrome increases, the rate of traffic flow may suffer because of the prevailing procedures. With increase in the traffic density the development of more positive surface movement guidance and control is essential to maintain capacity.
- 6.1.3 Surface movement control requires aircraft and vehicles to obtain air traffic control clearances and authorization respectively as prerequisites to operating on the manoeuvring area ,and this, in turn, gives air traffic control the authority to allocate, for example, taxiing routes and priorities to ensure the smooth flow of traffic. The result is a very practical system of surface movement control, which depends heavily on a sharing of responsibilities between pilots, vehicle drivers and air traffic controllers for collision avoidance.

6.2 TRAFFIC FLOW

6.2.1 GENERAL;

Except for the resolution of taxiway conflicts, the majority of requirements to vary the flow of air traffic on the manoeuvring area spring from other sources, e.g. departure or en-route flight limitations or surface congestion. It is the surface movement control system which must act as the buffer between the runway and the parking stand to absorb externally imposed delays or priorities. This task can be accomplished in two ways: firstly, in the case of departing aircraft, air traffic control may temporarily withhold clearances to start engines, push back or taxi as a broad regulatory strategy; and, secondly, air traffic control may, as a more tactical measure, sequence aircraft which have already been given clearance to taxi.

6.2.2 CLEARANCE WITH HOLDING (GATE HOLDING PROCEDURE);

12 June 2024

When planned departures may be subject to significant delay due to factors such as:

- ➤ a) en-route or terminal clearance limitations; or
- b) weather conditions below pilot's operating limits,

there are advantages in delaying engine start-up and absorbing the delay on the apron. This technique saves fuel and engine running time, and reduces the probability of the restricted aircraft blocking the route of other aircraft which are not subject to delay.

6.2.3 A method of dealing with 6.2.2 a) is for the ATS to operate a "request engine start" procedure with aircraft about to depart, and to maintain a close liaison with the air traffic control centre on the length of delay applicable on the routes served by the aerodrome. On receipt of the "request engine start" transmission the controller will consider the required departure time in relation to likely taxiing time and delay at the holding point, and will issue an engine start-up time calculated to absorb most of the residual time with engines off.

For example:

Request engine start 10.10
Designated take-off time 10.42
Average taxiing time to holding point including contingencies - 10 minutes
Time from "engine start" to "ready to taxi"4 minutes
Instruction given "Start engines at 10.28.

6.2.4 With 6.2.2 b), since a pilot's operating limits are normally not known to the ATS, the onus is placed on the pilot to defer his call for engine start until conditions are within his limits or, possibly, one increment below such limits in improving conditions. In this way, aircraft are more likely to arrive at the holding point in the order of their ability to depart.

6.2.5 TRAFFIC SEQUENCING PROCEDURES;

a) Traffic sequencing is the arrangement of taxiing aircraft into the most operationally effective order. For departures this means the order which offers the best departure rate and least over-all delay. For arrivals it entails arranging a sequence which is convenient for apron entry and subsequent parking, and causes minimum disruption to departures.

b) At many aerodromes, while the broad strategy of departure order is controlled by gate holding procedures the sequencing of departing aircraft while taxiing is a means of adjusting to late changes in the order. Sequencing methods will vary according to aerodrome layout, type and volume of traffic and weather conditions, particularly visibility. Sequencing methods include:

12 June 2024

a) allocating taxi routes of different length;

- b) allocating priority at intersections;
- c) by-passing at the holding point;
- d) temporary holding during taxiing; and
- e) delaying exit from apron.

6.2.6 At most aerodromes the necessary interval between landings provides adequate spacing between arrivals at the apron. When there is a requirement to control the timing or the order of traffic taxiing to the apron, the methods employed will be as in 6.2.5 a), b) or e). The application of a) may be by ATC direction after leaving the runway, or by suggesting that an aircraft take a particular runway turn-off after completion of the landing role.

6.3 EFFECTS OF VISIBILITY ON SMGC PROCEDURES

6.3.1 GOOD VISIBILITY;

 \geq

In visibility condition 1, which is when the controller can view the whole of the manoeuvring area for which he is responsible, the joint responsibility of pilot and vehicle driver for collision avoidance and with overriding controller instructions (designed to aid the smooth flow of traffic) works well. This is because good visibility allows the controller to see the aerodrome surface traffic situation and thus be able to anticipate conflicts which may occur and take early control measures to avoid them.

6.3.2 REDUCED VISIBILITY;

a) As visibility progressively deteriorates, the level of assistance which visual surveillance can give to the controller will also diminish and as the controller progressively loses sight of the aerodrome it becomes necessary for the methods of control to be adjusted to maintain a safe capacity for the prevailing operational conditions. As visibility reduces below condition 1, it may be expected that the visibility will be sufficient for the pilot to taxi and avoid collision with other traffic on taxiways and at intersections by visual reference, but insufficient for personnel of control units to exercise control over all traffic on the basis of visual surveillance. The larger the aerodrome, the more likely it is that this condition will occur. Under such visibility conditions, normal air traffic demand could be expected but there may be a need for restrictions on vehicular traffic on the manoeuvring area. Some constraint on capacity and increase in pilot and controller work-load could be expected due to the inability of the controller to see all of the manoeuvring area and to the need to acquire information by RTF which, in good visibility conditions, would have been available from observation.

b) At the lower level of visibility associated with visibility condition 2, visual surveillance from the control tower can contribute in only a minor way to safe movement on the manoeuvring area, the chief visual contribution to collision avoidance being the pilot's ability to separate himself from a preceding aircraft on the same taxiway. Since the pilot's visual capability in this condition does not

extend to crossing traffic, then each active crossing needs to be protected. The ATC work-load generated and the capacity of the SMGC system will depend upon the number of active crossings to be negotiated.

c) In visibility condition 3, neither the ATC unit nor the pilot can prevent collision by action based solely on visual observation of traffic. It follows, therefore, that for movement in these conditions the ATC unit must undertake the responsibility for providing both lateral separation and safe longitudinal spacing. The techniques used for longitudinal spacing and increased SMGC system capacity will depend upon the provision of SMGC components (see Table 4-2) and especially upon the number of segments, identifiable to both pilot and controller, into which a given route can be divided. For example, if a direct route from apron to runway represents 20 minutes taxiing time and there is no means of division, the effective departure capacity is three movements an hour. If the route can be divided into segments and the pilot's occupancy of each segment in sequence can be confirmed, then the capacity of the route can be substantially increased.

6.3.3 MODES OF OPERATION

a) As recognized above, collision avoidance by visual reference can continue after the controller has lost sight of the manoeuvring area and can continue for in-line following traffic at lower visibilities than for traffic on joining or crossing routes. No one mode of surface movement control is applicable to all weather conditions and the factor which dictates the choice should be taxiway visibility. Since taxiways are not instrumented for visibility measurement, RVRs are normally used as a guide to what is likely to be experienced en route to and from the runway. Over the surface of an aerodrome, however, there can be considerable variation in visibility conditions, thus reports from pilots and local knowledge of weather peculiarities can be of value.

b) The problem facing the controller is to maintain an efficient traffic flow in reduced visibility conditions. Although traffic sequencing procedures will continue to be necessary, the tendency will be for the controller to restrict the number of taxiing routes made available to avoid the number of conflicts at taxiway intersections. This can be achieved by requiring aircraft to taxi via a route published on the aerodrome chart or by the use of selectively switch able taxiway centre line lighting. As visibility conditions deteriorate the necessity for en-route taxi sequencing can be reduced by introducing gate holding procedures.

c) Notwithstanding simplification of routing to the extent which the configuration of taxiways makes possible, taxiway intersection conflicts are unlikely to be completely avoided except where the aerodrome layout is extremely simple. Consequently, four main modes of control, taking visibility conditions into account, may be defined. These modes are:

- ➢ pilot collision avoidance by visual reference along taxiways and at intersections. ATC intervenes at intersections by establishing priority only when necessary to maintain traffic flow;
- pilot collision avoidance by visual reference along taxiways and at intersections. ATC intervenes by nominating specific routings and by establishing priorities at intersections when necessary to maintain traffic flow;

- pilot collision avoidance by visual reference along taxiways. ATC responsible for nominating specific routings and establishing priority and providing lateral separation at intersections;
- > ATC responsible for nominating specific routings, providing safe longitudinal spacing along taxiways and establishing priority and providing lateral separation at intersections.

d) These modes of operation and their relation to visibility conditions imply a progressive increase in ATC responsibility as visibility deteriorates and the pilot becomes less capable of providing his own collision avoidance, firstly at taxiway intersections and secondly, along taxiways.

6.4 SEPARATION AT INTERSECTIONS AND LONGITUDINAL SPACING

6.4.1 GENERAL;

There is no technique of ATC applied separation or spacing between taxiing aircraft which approaches the efficiency of that which can be applied by pilots in good visibility. It follows that, allowing for ATC action on priorities and such other assistance and control that circumstances may dictate, the interests of both ATC and pilots are best served by leaving responsibility for collision avoidance with the pilots while conditions are such that they can safely fulfill the function. At most aerodromes this will be for more than 95 per cent of the time.

<u>Note*</u> Within this chapter the term lateral separation is used to describe the lateral distance between aircraft because values and aids are specified for maintaining the desired clearances. The term longitudinal spacing is used to describe the longitudinal distance between aircraft because no values or means for providing effective longitudinal separation have yet been developed.

6.4.2 SEPARATION AT INTERSECTIONS (LATERAL SEPARATION);

"Give-way" intersection control and "visual ATC directed priority" are commonly used methods which do not necessarily demand markings or lights at intersections. However, control of traffic at inters sections in the visibility conditions at or below which pilots cannot provide their own lateral separation, demand that:

 \succ surface traffic is able to recognize the intersection and stop, when signaled or instructed to do so, allowing adequate clearance for crossing movement; and

 \succ ATC is able to maintain a sequential record of traffic movement, and clear or hold aircraft and vehicles to maintain the maximum flow rate.

6.4.3 MARKINGS AND LIGHTS AT AN INTERSECTION

It follows that markings and/or lights must protect each approach to an intersection used in these conditions, and that:

a) pilots and vehicle drivers must obtain crossing clearance at every intersection; or

b) the system, under the control of ATC, must indicate without ambiguity who is to hold and who is to cross.

6.4.4 SPACING ALONG TAXIWAYS (LONGITUDINAL SPACING);

a) In the absence of non-visual guidance for taxiing, the lower limit of aircraft surface operation must be the visibility below which the pilot is unable to taxi by visual reference. Clearly, this will depend upon a number of factors including surface markings, the type and spacing of taxiway centre line lights and lamp technology and performance generally. Some aircraft flight decks offer a better view for taxiing than others, the taxiing performance of aircraft varies, cockpit work- loads differ, lack of familiarity with an aerodrome layout demands higher pilot concentration in poor visibility and complex or confusing taxiway layouts require a higher level of pilot alertness to avoid mistakes. It can be seen, therefore, that a combination of these factors applying to a particular situation may well be quite different from those applying to another pilot in different circumstances, with the consequence that one pilot may achieve safe taxiing relatively easily, whereas another may encounter great difficulty.

b) As indicated in 6.4.1 there is no technique of ATC applied longitudinal spacing which approaches the efficiency of that which can be applied by pilots in good visibility; nevertheless, as visibility reduces, the pilot encounters increasing problems in maintaining a safe spacing between himself and a preceding aircraft. Firstly, the pilot must be able to recognize the aircraft ahead as an obstruction and secondly, he must take action to maintain a safe spacing with this aircraft. A knowledge of the preceding aircraft type is essential for the pilot and he must be able to assess the closing speed and the need to slow his own aircraft, or even bring it to a halt, to maintain safe spacing.

- c) In low visibility the pilot will be concentrating to a great extent on visual cues necessary for the taxiing guidance of his aircraft and his eyes are likely to be focused near the taxiway centre line. Recognition of preceding traffic at the earliest possible moment (to allow effective corrective action) is thus difficult to achieve. As visibility reduces to the lower limits, a stage will be reached when the pilot cannot cope with both the guidance of his aircraft and the maintenance of longitudinal spacing. It is at this stage that ATC must assume the responsibility for providing longitudinal spacing along the taxiway.
- d) The visibility limit at which it becomes necessary to introduce ATC applied spacing can be effectively reduced by the provision of a precise, directed traffic advisory and alerting service including type, distance and relative position of preceding traffic and advice of closing speed. It is to assist ATC to provide such a service that Table 4-2 proposes the installation of SMR when it is intended to conduct aircraft operations in low visibilities at aerodromes when traffic demand is medium or heavy.

e) It is obvious that with all the variable factors it is not possible to prescribe a general fixed visibility at which ATC should assume longitudinal spacing responsibilities. Each aerodrome operational authority which intends to conduct low visibility operations will need to assess all factors in relation to the particular aerodrome and the operational circumstances to determine at which visibility the local ATC should take over longitudinal spacing responsibilities.

visibility, f) However, having determined this three further considerations are necessary. Firstly, it must be ensured that aerodrome and ATC facilities and established procedures are adequate for the proposed level of low visibility operations and ATC applied spacing (see Tables 4-1, 4-2 and 4-3). Secondly, because of the time involved in changing responsibilities in deteriorating visibilities (again a local circumstance) it will be necessary to set ATC longitudinal spacing procedures in effect before the basic visibility limit is actually reached. Thirdly, although RVR readings are the best available indications of runway conditions, visibilities on the remainder of the movement area may vary considerably and assessment of local meteorological anomalies and experience could require variation of the basic visibility. The net effect of these considerations is likely to be that the actual visibility figure at which ATC should start to apply longitudinal taxiway spacing is somewhat higher than the first determined figure. In this context, it must be emphasized that such determinations cannot be the prerogative of the aerodrome operational authority alone. Full consultations with other interested parties such as aerodrome users must be undertaken to ensure success in practical the application of low visibility longitudinal spacing procedures.

g) In so far as the practical application of ATC applied longitudinal spacing is concerned it must be remembered that aircraft movements on taxiways are discontinuous, that is, subject to starts and stops; one safe way to effect ATC longitudinal spacing is to divide taxiways into blocks or segments and, when controlling aircraft, to ensure that a "one-block" buffer is preserved between the blocks or segments occupied by succeeding aircraft. The manner in which control, using the block system, can be achieved varies from the very simple issue of RTF clearances to stop at, or proceed to, designated, well-defined clearance limits on a specified (route to the very complex issue of providing a computer switched taxiway centre line lighting and stop bar system with automatic maintenance of aircraft identity using sensor detection as a basis for the system logic.

h) Clearly the very simple method generates such a high level of controller work-load and frequency congestion that it can be used only with a very low traffic level. At the other extreme, the provision of a fully computerized system for a complete aerodrome may be virtually ruled out on the grounds of excessive complexity and, therefore, cost. A practical compromise system of visual guidance and control, offered by current technology, is the selectively switch able taxiway centre line light system with integrated stop bars.

i) When an aerodrome is equipped with selectively switch able taxiway centre line lights and integrated stop bars, safe spacing can be achieved by providing taxiing aircraft with a continuous centre line of lights to its clearance limit which is defined by a red stop bar. The clearance limit, in every instance, will be based upon the known position of the previously cleared aircraft and will comply with the requirements of ANO 14 Vol-I. A "known position" may be a positive location identification by a pilot, a radar derived position check or, preferably, an aircraft position report confirmed by radar. Onward clearance must be sequential and consist of RTF clearance to the next (defined) point, confirmed by the suppression of the stop bar and illumination of the taxiway centre line lights up to the next stop bar. The system demands a separation minimum of one block between aircraft or vehicles under control.

j) As discussed above (i), the capacity of a stop bar defined block control system is related to the number of blocks into which a given route can be divided, but the ATC work-load involved in switching lights, RTF communication and problems of maintaining aircraft identity also act as a constraint on the amount of traffic which can safely be controlled. The ability of a pilot to identify his position by reference to illuminated location boards is a help, but unless maintained identification and automated block control is also provided, the capacity of a block control system cannot be expected to approach that of normal good visibility operations. On the other hand, at some aerodromes a compensatory reduction in demand may occur as a result of the more stringent operating requirements associated with low visibilities.

- k) In addition to the variable factors and considerations mentioned before, the actual longitudinal spacing which can be provided by ATC will be directly related to the actual control facilities installed at each specific aerodrome. This scale of facilities and the procedures for their use is the final consideration in determining the longitudinal spacing which is to be applied by ATC to ensure that:
 - > a following aircraft does not collide with the preceding aircraft;
 - a following aircraft does not affect the manoeuvring requirements of the preceding aircraft; and
 - > a following aircraft is not affected by the blast of the preceding aircraft.

1) The minimum block length should never be less than the minimum safe longitudinal spacing which ATC (taking all local factors into account) may be expected to apply. This does not mean that each block needs to be this same minimum length. The actual length of each block will be largely dependent upon aerodrome layout, the SMGC system facilities which may be economically provided and, the demand and related ATC workload. If, for instance, the aerodrome layout lends itself to the diverse, laterally separated routing of taxiing aircraft, then the necessity for ATC applied longitudinal spacing may be much reduced and it would make sense to provide block definition points primarily at taxiway intersections. In this way the block definition points would serve the application of both lateral separation and longitudinal spacing, and it may then be necessary to divide only the lengthier unbroken sections of taxiway into blocks. Thus, block length (subject to "minimum" requirements) will vary for each aerodrome and, possibly, for each taxiway at that airport. In this circumstance, the prerequisite for any introduction of a "block" system will be a thorough study of aircraft movement, demand and ATC workload patterns to determine which practical SMGC design compromises may have to be made before detailed design and installation work is started.

m) Notwithstanding the general requirement for a minimum buffer of one block between traffic moving along a taxiway, pilots could (in visibility conditions assessed by the pilot to be adequate) be authorized, when approaching the runway holding point, to close up to a preceding holding aircraft. This procedure ensures optimum runway use. It can only be implemented if precise and timely traffic information, made possible by an SMR (surface movement radar) displayed directly to the controller, is available.

n) Research on, and experience in, operations at the lower visibility limits has not to date been widespread. Nevertheless, data made available by some aerodrome authorities which have extensive experience in low visibility surface operations are presented at **Appendix B** as guidance to the problems and requirements which must be considered if ATC longitudinal spacing on taxiways is to be applied.

o) Because procedures entailing the ATC application, of longitudinal spacing are used in very critical low visibility conditions, States contemplating the initial introduction of such procedures should seek the advice of other States which are known to have considerable practical experience in this field of operations before they commence related planning, consultation and facility design work.

6.4.5 THE ROLE OF SURFACE MOVEMENT RADAR (SMR)

a) There is currently no facility, or combination of facilities, which compensates fully for a controller's loss of visual contact with the aerodrome surface and the traffic on it. Information derived by other methods such as RTF communication or SMR is rarely as comprehensive or informative, and is far less economic in terms of the work-load expended in its acquisition. In a manual system the ATC work-load per movement increases as visibility decreases and the traffic handling capacity of the aerodrome control service declines. On other than simple route systems, the capacity can fall sharply in visibility condition 2 when separation at intersections becomes the responsibility of the controller. It drops even more steeply when the pilot can no longer provide his own longitudinal separation.

b) Nevertheless, given that an aerodrome is adequately equipped with visual aids, the provision of an aerodrome surface movement radar can make a valuable contribution to the safety and efficiency of ground movement control in reduced visibility and at night; optimum capacity for the conditions is unlikely to be achieved without it. Surface movement radar permits a continuous check on runway occupancy and taxiway usage, allows rapid appreciation of lighting control requirements and facilitates clearances for aircraft and vehicles. In emergencies it can play a part in the expeditious movement of emergency vehicles and the safe disposition of other traffic, but it too has its limitations.

c) The accuracy of manoeuvre required on taxiways, which can satisfactorily be accomplished by following lights and markings, is far more precise than could be provided by ATC instructions using SMR direction. Although SMR can provide positional information to the controller, it is a very difficult task for the controller to position an aircraft precisely using such radar. It isnecessary for the pilot to be able to comply with instructions given by the controller without the radar being used to provide directional guidance, or :o afford any ultimate prescribed separation. However, the more precise traffic and positional information that the controller is able to give by using radar is of major assistance to pilots providing their own collision avoidance.

d) At a major aerodrome, a large part of the manoeuvring area can be obscured from the control tower while visibility is still within the limits at which traffic can be expected to operate at the normal level of demand, i.e. in visibility condition 2. In these conditions, while the usefulness of SMR could scarcely be exaggerated, it is not possible to monitor in detail all traffic likely to be present on the manoeuvring area. There are two main problems:

➤ the work-load and concentration involved in detailed monitoring is very high and restricts ATC capacity; and

➤ there is a limit to the amount of traffic information which a controller, using an SMR display, can identify and retain for an extended period.

e) In summary, therefore, SMR can make a valuable contribution to the safety and efficiency of surface movement control in low visibility and at night, but it is an adjunct and not an alternative to provision of visual guidance and control facilities and manoeuvring area protection measures. Certainly taking SMR limitations and control capacities into account, ATC cannot be charged with the administrative responsibility of aerodrome safety, although ATC could be expected to take appropriate measures to protect traffic under control if and when intrusions are detected using SMR. Also, if other facilities are not provided, e.g. holding position markings and lights, then ATC cannot confirm pilot compliance with control instructions unless guidance with respect to SMR positional tolerances are known. A set of performance objectives for SMR is included in **Appendix C**.

6.5 EMERGENCY PROCEDURES

6.5.1 ANO-14 Vol-I; Chapter 9 requires the establishment of an aerodrome emergency plan in which ATC is one of the agencies involved. An aerodrome emergency plan is intended to ensure proper and immediate co-ordination of aerodrome services with other appropriate agencies which could be of assistance in responding to emergencies occurring on or in the vicinity of an aerodrome. Emergency situations envisaged include:

 \triangleright aircraft emergencies;

> acts of unlawful interference with civil aviation;

➤ occurrences involving dangerous goods; and

≻ structural building fires.

ATC is of necessity involved in any such plan, through its communications and control functions, together with many other departments, services and agencies.

6.5.2 In the event of an emergency situation on the movement area occurring in good visibility conditions, it may be assumed that the controller will either observe the incident, or be among the first to know of it, and that he will initiate emergency action. If an aircraft is involved the ATC service will supply the rescue and fire fighting services with the location and type, take action to safeguard other traffic on the movement area, restrict further entry into the area and maintain contact with the emergency command post when it is established.

6.5.3 If an emergency occurs on the movement area in poor visibility and at visibilities below the limit of ATC visual surveillance, the pattern of events and ATC action are likely to be:

a) realization that an incident has occurred which may result from:.

- ➢ RTF messages from aircraft involved;
- > RTF messages from other aircraft;
- \blacktriangleright information from vehicles, security guards or other persons;
- visual indications (e.g. a glow through fog);
- SMR indications;
- ➤ aural indications; and
- ➢ failure of aircraft to respond to RTF transmission;
- b) initiation of emergency action;
- c) discovery of the location of the incident or accident. This will usually to some extent become evident from information gained from a) above;
- d) assistance to rescue and fire fighting vehicles, which may include:
 - > RTF advice as to the location of the incident;
 - switching of taxiway lights to provide guidance for emergency vehicles; and
 - > use of SMR to assist emergency vehicles;

e) safeguarding of traffic in the movement area, which will include:

stopping the movement of all surface traffic;

> consideration of suspension of flight operations; and

> restriction of entry to the movement area of other traffic;

- f) liaison with the emergency command post;
- g) the resumption of restricted surface movement when the situation has been accurately determined:
 - by the re-routing of other traffic clear of the occurrence area; and
 - by the re-arrangement of route system to permit continuation of aerodrome operations;
- h) assessment, and indication to those concerned, of the surface movement capacity in the new conditions;
- i) facilitation of traffic movement concerned with the removal of damaged aircraft or vehicles; and
- j) arrangement for the inspection of the occurrence area and assessment of damage to aerodrome surface, lights and other facilities.

6.6 RTF PROCEDURES AND PHRASEOLOGY

- 6.6.1 The importance of correct use of language and phraseology and of adherence to associated procedures cannot be overemphasized. The safety and efficiency of ground movement depends upon the clarity of understanding between the controller and each of the pilots or vehicle operators in contact with him. Such co-operation requires an understanding of the over-all situation which, in whole or in part, is gained by monitoring RTF transmissions.
- 6.6.2 Annex 10, the ICAO Doc 4444 (PANS ATM) and the Manual of Radiotelephony (Doc 9432) contain the recognized RTF procedures and phraseology.

12 June 2024

VERSION. 2.0 6.7 CO-ORDINATION

6.7.1 Each aerodrome operator must, together with its associated ATS provider authority, establish the facilities and procedures necessary to allow co-ordination to be performed over the full range of surface movement activities. This involves not only the establishment of direct speech circuits between controllers and operators responsible for actual aircraft movement (e.g. the control tower, the apron management service and airport safety officers) but also the administrative directives to enable the efficient application of, for example, low visibility and emergency procedures.

a) The establishment and regular meeting of a committee of which representatives of major aerodrome interests are members is a good way to resolve any problems in co- ordination which may occur.

b) A particularly important aspect of such administrative co- ordination is the need to establish sound procedures for the rapid rectification of facility faultsm where these adversely affect the operational safety and efficiency of the surface movement guidance and control system.

Chapter 7

LOW VISIBILITY OPERATIONS

7.1 INTRODUCTION

7.1.1 The increasing demand for operations in visibilities as specified in ANO 14 Vol-I of (visibility condition 3) has led to an increasing number of aerodromes at which low visibility operations are conducted. Because of this, there is a need to develop an effective surface movement guidance and control (SMGC) system to cover the inherent problems associated with such operations and provide a safe ground environment for aircraft and vehicles operating in low visibility on the movement area.

7.1.2 The purpose of this chapter is to briefly outline the preparation necessary for aerodrome operating agencies to provide for low visibility operations. Guidance on the selection of particular SMGC system components for visibility condition 3 is contained in Chapter 4, Table 4-3 with appropriate reference to specific ICAO Annex documentation. Further detailed information and advice is also provided in the Aerodrome Design Manual, Part 4 and the Manual of All-Weather Operations (Doc 9365).

7.1.3 Although this chapter relates more to Category III type operations, it is important to note that many aerodromes not equipped for landing in low visibility often conduct take-off operations in low visibility and thus many of the points discussed are equally pertinent to this form of operation.

7.2 PREPARATION FOR LOW VISIBILITY OPERATIONS

The introduction of low visibility operations is considerably more complex than a simple adjustment of existing procedures and restrictions. Ground operations below an RVR as specified in ANO 14 Vol-I create additional problems due to the reduced ability of controllers, pilots, drivers and the relevant personnel to control and operate on an aerodrome in reduced visibility without risk of collision with others and infringement of an active runway. It is therefore essential that no agency be allowed to operate independently from another and, before embarking on such operations, the aerodrome operator or appropriate authority must administer and control the various organizations and provide specific low visibility procedures and regulations.

7.2.1 WORKING GROUP;

No two aerodromes will be exactly alike and thus during the preparation period, it is essential that all aspects of an aerodrome operation which might affect the introduction of low visibility procedures should be examined. The administrative process will vary from State to State but the most effective method is to form a working group composed of representatives of all parties involved in such operations. The

working group will need to identify many general factors pertinent to operation below 400 m RVR. These include:

- > the need for additional and more reliable ground equipment and aircraft systems;
- the special requirements for the training and qualification of flight crew and ground personnel;
- > the stringent criteria required for obstacle clearance;
- > the aerodrome layout and the nature of the surrounding terrain;
- > the stringent criteria required for the protection of the ILS signal;
- the adequacy of runways and taxiways; approach, runway and taxiway lighting and marking for such operations;
- > the need for a more comprehensive control of ground movement traffic; and
- > the deployment of rescue and fire fighting services.

It will be necessary for the working group to establish a work programme, based on a time schedule, in which these subjects and many others are examined.

7.2.2 OPERATIONAL ASSESSMENT;

a) Low visibility operations demand higher specifications in the form of equipment and training which are costly to provide. Study will be necessary in the initial planning stage to decide whether such operations are justified. This study will need to consider such factors as the incidence of low visibility, present and forecast traffic volumes, the proximity of suitable diversion aerodromes and the potential for improvement in regularity of operations and safety standards.

b) In addition to the introduction and revision of low visibility procedures, the working group will also have to decide on the visual and non-visual components of the SMGC system and the control methods to be employed. Chapter 2 provides detailed guidance on the selection of appropriate equipment and visual aids, and Chapter 4 discusses the effect of deteriorating visibility on the capacity of the SMGC system and the control methods and procedures that can be adopted.

a) The working group will also need to make a comprehensive safety assessment of the aerodrome. Guidance on this assessment is given in the ICAO Manual of All-Weather Operations, Chapter 5 and should take account of the lowest RVR at which the aerodrome intends to remain operational and the expected volume of aerodrome traffic movements.

- b) In particular, the assessment should take account of the increased operating risk due to the lack of visual control that can be exercised by ATC as visibility decreases. One method is to use the same figure that is often quoted in the development of aircraft operating minima, i.e. "risk not in excess of the probability of one fatal accident per 107 operations". Although this figure is used for higher aircraft movement speeds than would be expected when taxiing in low visibility, it does include the probability of runway intrusion at the time of aircraft landing or taking off and, as such, is pertinent to the over-all ground movement scenario. As an aircraft is at its most vulnerable when landing or taking off and is virtually incapable of taking any avoiding action, the attention of the working group should be focused specifically on the probability of runway intrusion by taxiing aircraft and/or vehicles. In this respect the following action should be taken:
 - examination of the movement area design with specific attention being given to aircraft routings between apron areas and runways, ground traffic control points and movement area entrances;
 - examination of the existing ATS instructions, operations orders and company rules that are relevant to the general ground movement scenario;
 - examination of meteorological records and movement statistics for aircraft and other vehicles;
 - examination of any past records of runway intrusion. If no records are available, it may be necessary to establish an incident rate by discussion with controllers, inspecting authorities, etc. or refer to general international experience;
 - examination of existing airport security procedures (see also Chapter 7 — Runway Protection Measures). The possibility of runway intrusion as an aggressive act is not large in comparison with the possibility of an inadvertent intrusion but the use of general

security procedures can have a significant effect upon the over-all intrusion probability; and

- ➤ a comprehensive inspection of the total movement area accompanied by the relevant experts and responsible authorities during which the findings from a) to e) should be verified.
- c) This safety assessment should be considered by the working group as part of a complete SMGC system and should be completed in the early stages of the preparation process. Those areas of operation which are considered to have a high level of risk will require extra protection measures and associated procedures.

7.2.4 LOW VISIBILITY PROCEDURES

a) The procedures required for low visibility operations vary with each aerodrome. The low visibility procedures developed for an aerodrome must take into account local conditions; however, the basic factors that follow will need to be considered.

- All drivers and other personnel authorized to operate on the movement area are adequately trained in these procedures and are aware of the additional responsibilities placed upon them in low visibility. It follows that the point at which low visibility procedures come into operation must be well defined.
- A record is maintained by the ATS of persons and vehicles on the manoeuvring area (ref. PANS-ATM, Part V).
- All non-essential vehicles and personnel, e.g. works contractors and maintenance parties must be withdrawn from the manoeuvring area.
- Essential vehicles permitted to enter the manoeuvring area are kept to a minimum and must be in RTF communication with ATC.
- Where the possibility of inadvertent entry onto the manoeuvring area exists and where physical closure is not

practical, e.g. between aircraft maintenance areas and manoeuvring areas, entry points should be manned. If an opening is too wide for visual surveillance then it should be fitted with intruder detection equipment, and those areas with intensive vehicular movement adjacent to the manoeuvring area and with no traffic control should be regularly patrolled.

- All unguarded gates/entrances to the movement area are kept locked and inspected at frequent intervals.
- There is adequate provision for alerting airlines and other organizations with movement area access of the introduction of low visibility procedures. This is particularly important where companies exercise control over their own apron areas and maintenance facilities adjacent to the manoeuvring area.
- All personnel whose presence on the movement area is not essential to the operation should be withdrawn.
- Appropriate emergency procedures must be developed (see7.2.5).

b) Consideration should also be given to the closure of runway access taxiways that are not essential for entrance to or exit from the particular runway. This can be achieved by taxi- holding position lights, traffic control lights, red stop bars or by physical closure using the unserviceability markers specified in ANO 14 Vol-1, Chapter 7. Also, where possible, there should be a limitation on the number of routes for taxiing to and from the runway in low visibility and these should be identified, marked and published for the use of aircraft operators.

c) This manual defines visibility condition 3 as "Low visibility Operation"; however, it will be necessary for the authority to provide specific procedures at a much higher RVR value dependent on the type of aerodrome operation.

d) The point at which low visibility procedures should be implemented will vary from aerodrome to aerodrome depending on local conditions. This point may initially be related to a specific RVR/cloud base measurement (e.g. 800 m/200 ft) in a worsening weather situation and will be dependent on the rate of weather deterioration and the amount of lead time necessary to implement the extra measures.

e) When the low visibility procedures are implemented, it will be necessary for the authority to continuously review the effectiveness of the procedures and, when necessary, to amend or update the procedures.

f) The above is intended as a guideline in establishing low visibility procedures. The actual procedures developed for a particular aerodrome will need to take account of local conditions. Examples of low visibility procedures in use at several airports experienced in such operations are shown in **Appendix B**.

7.2.5 EMERGENCY PROCEDURES

a) An essential factor that must be addressed prior to the introduction of low visibility operations is the ability of the rescue and fire fighting service (RFF) to respond quickly to an emergency situation. ANO 14 Vol-I, Chapter 9 gives the specifications for the provision of RFF facilities and the requirement for an established aerodrome emergency plan in which ATC are involved. In good visibility it can be assumed that ATC will either observe an incident or be among the first to know of it, and that they will initiate emergency action, provide the RFF service with the accident location and aircraft type, take action to safeguard other traffic and maintain contact with the emergency command post.

b) Article 6.5 — Emergency procedures, in Chapter 6 of this manual, outlines in general terms the action to be taken by ATC, but in low visibility conditions and at visibilities below the limits of ATC visual surveillance, ATC may not be immediately aware that an incident/accident has occurred. For instance, a brake fire, unless detected on board the aircraft, is not likely to be noticed by ATC and a report, if any, will come from some other source. It is important therefore that those personnel permitted to operate on the movement area be aware of their responsibilities in reporting such incidents quickly and accurately and are well versed in the correct method of notification to ATC and/or the RFF service.

c) Sometimes the information received may be limited or confused and ATC may need to verify that an incident has occurred and also its location. There is no simple clearly defined operational procedure to suit every situation. It would be wrong if the crash alarm was initiated on every occasion when doubt arose but, on the other hand the time saved in the real event could be imperative. Responsibility for the final decision must rest with the controller on the spot and there should be no operational or commercial pressure that might prompt him to "wait and see" and equally no criticism if, in the final analysis, there was a degree of "over reaction". There should be no reluctance to call for RFF support. d) Once emergency action is initiated, a number of other problems arise as a result of reduced visibility. The primary need is to get the RFF services to the scene of an incident/accident as quickly as possible without creating additional safety hazards. The factors that affect this response time are:

- the location of the RFF vehicles;
- \succ the aerodrome layout;
- the nature of the terrain adjacent to the paved areas and in the immediate vicinity of the aerodrome;
- > the RFF vehicle capabilities (e.g. cross- country); and
- \triangleright vehicle speed.
- e) All the above are pertinent to normal RFF operation but in low visibility the speed and route to an incident/accident can become critical. It is not expected that vehicle speed will be significantly reduced until the visibility falls below 200 m when the need to reduce speed to avoid collisions may affect the RFF response time. Since the location of an incident/accident is random and as many aerodromes have only one RFF station, the response time in low visibility may prove to be excessive. A method of overcoming this is to redeploy the RFF vehicles at two or more dispersal points about the aerodrome to ensure that no incident occurs at more than an acceptable distance from RFF support. The reduction in distance will compensate for any speed loss and is particularly important in the case of fire where rapid intervention may prevent a minor incident escalating to something more serious. In the event of a major accident the over-all loss of a concentration of RFF vehicles as a result of redeployment is probably offset in the early stages by the more rapid intervention of a smaller RFF force.

f) The selection of the shortest route will be dependent upon the geography of the aerodrome and the deployment of RFF vehicles. It is obviously important that RFF personnel must be very familiar with the aerodrome layout, signs, markings and easily identifiable landmarks together with the associated terrain. It is also important that they are kept fully informed of temporary obstructions such as works and maintenance that may affect the choice of route to an incident. ATC may be able to assist by switching taxiway lights to provide a clearly defined route, or by re-routing other traffic clear of the occurrence area and, where available, by the use of surface movement radar (SMR).

g) The use of SMR simplifies the solution to the many problems associated with the location of an incident and the subsequent guidance and control of RFF vehicles and other

traffic. The scattering of debris in a major accident provides a most positive response on modern high definition radars and the ability to display all activity on the aerodrome surface enables controllers to identify the precise location of surface traffic and provide the best route for the RFF services. It is important that, where this facility is available, the RFF and ATC services carry out regular training exercises in order that they are both proficient in this use of the equipment.

h) When SMR and/or sophisticated lighting systems are not available for vehicle guidance, it may be necessary to consider the provision of extra navigation equipment on board the RFF vehicles. This equipment could vary from a relatively simple beacon homing device through to more complicated thermal image intensifiers or area navigation systems recently developed for vehicles. But whatever the standard of equipment, it is essential that RFF personnel are fully trained in all the problems associated with operating in low visibility and are given opportunities to carry out realistic exercises when these conditions prevail.

7.2.6 SUMMARY

- a) Before embarking on low visibility operations, the aerodrome authority in association with the user operators will need to ascertain the:
 - incidence of low visibility conditions;
 - > volume of traffic expected to operate in such conditions;
 - > assessment of current needs and equipment; and
 - > justification for such operations.
- b) If the decision is made to proceed the appropriate authority will need to:
 - establish the lowest RVR at which the aerodrome intends to operate;
 - complete a comprehensive safety and security assessment of the total aerodrome movement area and its operations;

- provide any additional and/or more reliable ground aids and equipment;
- > provide for more comprehensive control of ground traffic;
- provide specific low visibility procedures and regulations with an appropriate implementation point;
- > assess the RFF deployment and response time; and
- provide appropriate training and qualification of relevant personnel.

Chapter 8

HIGH TRAFFIC VOLUME OPERATIONS

8.1 GENERAL

- 8.1.1 High traffic volume operations are a fact of life at many aerodromes, and can be expected to become so at many others. They place significant demands on the surface movement guidance and control (SMGC) system and require facilities and procedures to meet the following major objectives:
 - protection of active runways from incursions by aircraft, vehicular and pedestrian traffic;
 - maintenance of efficient traffic flows, principally between terminal buildings and runways, but also between other areas, e.g. aprons and maintenance facilities; and
 - reduce conflicts between the aircraft, vehicular and pedestrian traffic.
- 8.1.2 While the facilities and procedures required for a high traffic volume operation call for a significant level of investment, the majority of them are also essential to a surface movement guidance and control system designed for low visibility operations. Detailed information on those common-purpose items is given elsewhere in this manual, and in the present chapter they are merely noted, with cross- references where appropriate. More complete information is provided on facilities and procedures considered unique to high traffic volume operations and attention is drawn to Chapter 4 , Table 4 -2, which gives guidance on selecting SMGC system aids for operations under heavy traffic conditions.

8.2 PLANNING AND SIMULATION

8.2.1 Chapter 6 of this manual, Section 6.3.3, gives guidance on the evaluation and improvement of an existing SMGC system, and on the designing of a new one. High traffic volume operations emphasize the importance of the associated planning process, often involving an in-depth analysis of the real time traffic situation. A representative list of items requiring consideration could include:

- ➤ alternative runway configurations;
- taxiway system design and/or improvements;
- ➤ alternative runway assignment procedures;
- > ATC procedures and separation requirements;
- ▶ automation aids available to the various components of the SMGC system;
- ➤ terminal layout and gate/stand allocation;
- > gate/stand holding provisions and procedures; and
- contingency provisions and procedures (accidents, aerodrome maintenance, snow removal, etc.).
- 8.2.2 Guidance material on a simulation model and techniques for such an analysis is given in Chapter 5 . In the specific context of planning an SMGC system for high traffic volume operations, simulation can make a valuable contribution, and is recommended. Its objectives should clearly include the design of optimum aerodrome layout, facilities and procedures to alleviate or prevent traffic flow impediments.
 - 8.2.3 Planning objectives for high traffic volume operations should also include:
 - provision of taxi-routes with the minimum number of intersections (i.e. crossing points between aircraft, or aircraft and vehicular and/or pedestrian traffic) consistent with projected traffic needs;
 - maximum use of one way taxiways and circular routes, particularly in connection with the standard taxi-routes discussed in Section 6.4 below;
 - provision, so far as practical, of separate service roads for vehicular traffic which has no need to use the manoeuvring area (including some of the traffic to/from maintenance, cargo and catering areas); and
 - provision of adequate RTF facilities.

8.3 RUNWAY PROTECTION

- 8.3.1 Guidance material on the critically important matter of runway protection measures is given in Chapter 9 of this manual, and stress is laid on the fact that in very significant measure protection depends on:
 - provision of sufficient visual information (signs, surface markings and lights) to pilots and vehicle drivers, all of whom must be conversant with that information and with the associated procedures; and
 - particular attention to the clear and unambiguous marking of operational runways at all points of access (see especially Chapter 9, Section 9.4).
- 8.3.2 High traffic volume operations add no specific requirements to those enumerated in Chapter 9. They do, however, increase the probability of runway incursions that are known to result from accidental entry, mistaken routes and misunderstood clearances, and for that reason add emphasis to the recommendations in Chapter 9 and the comments on aerodrome surface markings, signs, lighting and procedures in the following sections of this chapter.

8.4 STANDARD TAXI-ROUTES AND CHARTS

- 8.4.1 The over-all objective of establishment and promulgation of standard taxi-routes is to enable traffic to be as self-regulating as possible, thus minimizing the amount of control intervention and the consequent volume of RTF communications.
- 8.4.2 Information on the establishment of standard taxi-routes for aircraft is given in Annex

11, Chapter 4 and in Chapter 5 of this manual. Supplementing that information, matters of particular importance to an SMGC system for high traffic volume operations can be summarized as:

a) a positive requirement for standard taxi-routes as surface movement volume increases, as indicated in Chapter 4, Table 4-3;

b) such routes to be well identified and lighted in accordance with ANO 14 Vol-I, Chapter 5 specifications for taxiway marking and lighting;

c) signs to reflect the provisions of ANO 14 Vol-I, Chapter 5, and the additional material given in Appendix A to this manual, and specifically:

 \triangleright to be uniform throughout the aerodrome;

> to be self-evident (unambiguous) and simple, clearly identifying the standard taxi-route to be followed, and permitting pilots to receive taxiing clearance expressed in terms of a route designator and to proceed to the limit of that clearance without further RTF communications;

GM 14-24

- > to be located with due regard to the speed of taxiing aircraft, the height of the cockpit above ground, and the need to give information to pilots in sufficient time for it to be correlated when necessary with that on the aerodrome chart; and
- to ensure adequate protection against the possibility of an aircraft entering a one-way route in the wrong direction.
- 8.4.3 The ICAO Standards and Recommended Practices covering the provision and content of the aerodrome chart and the ground movement chart are given in Annex 4, Chapters 13 and 14. An aerodrome chart ICAO will need to be made available for all aerodromes used by international commercial air transport. Where the complexity of the movement area, aids and terminal facilities make the aerodrome chart inadequate then a ground movement chart is also required. In the present context of high traffic volume operations and standard taxi-routes, charts meeting the requirements of Annex 4 are essential. As indicated in Chapter 4, Table 4-3, the aerodrome authority should also initiate amendments of the charts as necessary.

8.5 GROUND CONTROL ORGANIZATION AND RTF FREQUENCIES

8.5.1 The high traffic volume operations being addressed in this chapter will in all probability require use of more than one RTF frequency. It is recommended that consideration be given to the assignment of such frequencies on an "area basis", rather than between arriving and departing aircraft. Assignment on an area basis will in most cases

12 June 2024

ensure that potentially conflicting aircraft are guarding a common frequency, thereby both increasing the safety factor and minimizing the need for controller intervention.

8.5.2 Experience gained in the co-ordination of airborne traffic has demonstrated that safety is enhanced when the coordinating controllers are located in close physical proximity to each other. When several controllers are involved in surface traffic movements the same requirement for close physical proximity should be addressed, particularly in high traffic volume operations where safety is dependent on rapid co-ordination.

8.6 AIRCRAFT STAND ALLOCATION AND HOLDING

In the context of highest traffic volume operations two measures are particularly recommended to assist traffic flow between manoeuvring and apron areas:

- provision of information to pilots at the earliest appropriate time on the aircraft stand that has been assigned to their aircraft;
- provision of suitably located holding bays as specified in CAR- 14, Chapter 3. Such bays can help to avoid or reduce congestion when delays in aircraft arrivals or departures occur.

8.7 SPECIAL EQUIPMENT

8.7.1 Guidance material on the role of aerodrome surface movement radar (SMR) is given in Chapter 6. Its requirement in high traffic volume operations is here confirmed, as also indicated in Chapter 4, Table 4-2. SMR can be particularly useful when darkness, atmospheric conditions, buildings or the size of the area involved make it impossible for controllers to monitor parts of the taxi way comp

Chapter 9

RUNWAY PROTECTION MEASURES

9.1 INTRODUCTION

9.1.1 The protection of a runway from unauthorized entry by persons, vehicles or aircraft is a fundamental part of a surface movement guidance and control (SMGC) system and is essential to the safe and efficient operation of an aerodrome. Although this fact is recognized in Annex-11, ANO 14 Vol-I, the PANS-ATM and the Aerodrome Design Manual, Part 4, Visual Aids, the subject is not fully addressed in any of these documents. Runway protection involves many disciplines and its importance is such that separate consideration to this subject is given in this manual.

9.1.2 This chapter outlines the operational problem and gives some protection methods and equipment that can be used by the appropriate aerodrome and air traffic control (ATC) agencies to check and, if necessary, enhance their operating procedures. It is important to note that for operations in low visibility, ICAO guidance and regulation are predominantly for the landing phase of flight and take less account of takeoff. Certain incidents have emphasized the need for aviation authorities to review their runway protection procedures regardless of specific visibility constraints.

9.2 THE OPERATIONAL PROBLEM

9.2.1 The function of a runway is to provide for the transition of aircraft from flight to surface movement and from surface movement to flight. This entails movement at high speed on, and in close proximity to, the runway surface and demands that the runway is free from any obstacle during landing and take-off. It is in these stages of flight that an aircraft is at its most vulnerable and is virtually incapable of taking any avoiding action and is certain of destruction if a high speed collision occurs with any obstacle of significant size.

9.2.2 The average runway occupancy time is the ultimate determinant of the capacity of an aerodrome. Consequently in busy periods there is pressure to maintain a high traffic flow rate. This and the need for safety requires the following basic philosophy of operation:

- so far as possible the runway must be reserved for the exclusive use of landing and departing aircraft; and
- landing and departing aircraft must occupy the runway for the minimum amount of time.

9.2.3 In practice, it is not possible to reserve a runway solely for the operation of aircraft.Maintenance and service vehicles will need access to the runway and at most aerodromes certain vehicles and taxiing or towing aircraft will need to cross. Access to the runway and its environs must be under the control of the ATC service and be subject to timing and other considerations which, in periods of high demand, can be critical. But there can be no physical barrier to the runway or manoeuvring area and safety depends upon every pilot and driver operating on the area being familiar with the aerodrome layout and complying with aerodrome procedures, signs, signals and ATC instructions. It follows that the essential basis of runway protection is the exclusion from the manoeuvring area of all vehicles that have no right or need to be there, and a requirement for adequate knowledge, competence and discipline on the part of those duly authorized to operate on the area.

9.3 **PROTECTION MEASURES**

Apart from deliberate intrusion on to a runway for unlawful purposes, which falls outside the scope of this document, there are three types of encroachment:

- Accidental entry to the runway by a vehicle whose driver has lost his way and somehow entered the manoeuvring area;
- Mistaken entry resulting in an unauthorized entry to the runway by an aircraft or vehicle cleared to move on the manoeuvring
- Misunderstood clearance resulting in an entry to the runway by an aircraft or vehicle whose operator believes, mistakenly, that

Note- Each of the above may be considered separately.

9.4 AC DENTAL CI ENTRY;

- 9.4.1 The movement area must be fenced or otherwise protected against unauthorized entry, and should be provided with controlled entry points. Although such a fence protects far more than the runway itself, it is the first and most important method of runway protection since it will keep out the driver to whom movement area signs and signals would be meaningless. Complete protection can be expensive and sometimes difficult to achieve, particularly where taxiway extensions to maintenance areas cross main traffic routes for aerodrome employees, tradesmen, aerodrome contractors, etc. but the cost has to be measured against the high probability that if
- 9.4.2 Another aspect of the same problem is when a vehicle, which is authorized to enter the movement area, e.g. the apron, mistakenly strays onto the manoeuvring area for which it has no clearance. To preclude accidental entry, a thorough briefing of all persons in charge of vehicles authorized to enter the movement area occur but the provision of positive ground movement rules and regulations should reduce the chances of mistakes occurring to a minimum. Guidance on the application of such rules is given in Appendix C.

9.5 MISTAKEN ROUTE;

- 9.5.1 An aerodrome can be a very confusing place, even to those who are familiar with its operation and topography. Changes in visibility or light intensity, the disappearance of familiar landmarks, use of a rarely employed taxiway or runway, even a change of aircraft type or vehicle, i.e. a different viewing aspect from cockpit or driving seat, can all contribute to mistakes being made in location identification and direction of movement. Obviously, the better the taxiway system is marked, the less likely that a mistake will be made, but at many large aerodromes errors of this kind can and do occur.
- 9.5.2 A mis-routing confined to taxiways can cause disruption, delays and considerable frustration but rarely causes a major incident; the danger comes with an unauthorized movement on to an operational runway. It must be recognized that in restricted visibility or at night this can happen without the ATC controller being immediately aware that an unauthorized entry to a runway has taken place. Even with surface movement radar (SMR) it is not feasible to monitor continuously every authorized movement on a busy aerodrome. Protection from this type of encroachment must rest solely on an operational runway being clearly and

unmistakably marked as such from any point of access. Permanent marking as a runway may not be sufficient because non-operational runways can be used as a taxi route and entered without special clearance. Therefore, there must be some other positive method of indicating that a runway is active and taxi-holding position lights fulfill this function. Stop bars also protect a runway, and it is a Standard for these to be provided in conjunction with a precision approach runway Category III and consideration is now being given to extending the applicability to precision approach runways Category II. At aerodromes without Category II or III approach aids, aircraft are still able to depart in reduced visibility conditions and therefore the aerodrome operator must give special attention to their signs, lights and markings to ensure that the operational runway is adequately marked.

9.6 MIS UNDERSTOOD CLEARANCE

9.6.1 This is probably the most common cause of unauthorized entry to an operational runway and is also the most difficult to prevent. If a pilot or driver believes that he has clearance to enter a runway then, unless there is some obvious danger, he will proceed. The problem is compounded by the radiotelephone (RTF) broadcast system where all those on the frequency can hear the instructions that are passed. The fact that the controller, driver and pilot may be using a language which is not necessarily their mother tongue together with the pressures associated with a busy environment, are all factors which result in a misinterpretation of what is said. The similarity of many call signs does nothing to help what is already a possibly confused situation.

9.6.2 Until the development of discrete data transfer between the controller and individual aircraft/vehicles on the aerodrome surface, the possibility of misunderstanding or misinterpretation will remain. It follows that in the interests of runway protection, communication methods must be such to reduce the likelihood of misunderstanding and the procedures used should be such that they will not result in an aircraft or vehicle entering an operational runway without clearance.

9.6.3 For many years the value of standard RTF phraseology has been recognized and special attention should be given to the Manual of Radiotelephony to ensure that the phraseologies and terms used conform to those that have been agreed on an international basis. Other faults in RTF communication that can lead to unauthorized entry of a runway are:

- careless use of a qualified clearance, e.g. "cross after the B727" to a driver whose facility for aircraft recognition may be less than the controller assumes;
- talking too quickly;
- superfluous remarks, particularly of protest or criticism, which do not make a positive contribution to a situation; and
- use of abbreviations, especially call signs, which could apply to more than one aircraft or vehicle. It would add significantly to safety if no driver or pilot would move on a clearance without being quite sure that such a clearance applied to him, and in the event of any uncertainty to check with ATC regardless of how busy the situation may appear to be.

9.6.4 The most effective way of reducing the possibility of a misunderstood clearance which may result in an encroachment on to an operational runway is for verbal instructions to be associated with an appropriate visual signal such as the switching off of a stop bar and the switching on and off of taxiway centre line lights, beyond the stop bar.

9.7 RUNWAY PROTECTION METHODS AND EQUIPMENT

9.7.1 The basic philosophy of runway protection must be the use of proven and safe procedures with all traffic conforming to recognized rules. All personnel must be fully conversant with these rules and the appropriate authorities should establish a monitoring system that maintains the highest standards possible. There is no equipment that can be a substitute for this basic philosophy.

9.7.2 The primary method of protection must be the provision of sufficient visual information to pilots and drivers that they are approaching an active runway in order that they can conform with the recognized procedures. This visual information in the form of signs, surface markings and lighting equipment can be supported by more sophisticated non visual electronic detection equipment where traffic density and airfield complexity increase the risk of a possible infringement of the runway.

9.8 SURFACE MARKINGS, SIGNS AND LIGHTING;

9.8.1 Chapter 4 identifies the visual aids that are available for surface movement guidance and control. The following are for use as runway protection aids:

- taxi-holding position markings
- \succ stop bars
- taxi-holding position lights

9.8.2 SIGNS;

- ➢ holding position
- taxiway/runway intersection
- > STOP
- > NO ENTRY
- 9.8.3 Details on the characteristics and installation of these aids are given in ANO-14 Vol-I, Chapter 5. It must be recognized that the application requirements given in ANO-14 Vol-I are a minimum and that some facilities only required when a runway has Category II or III precision approach status are useful in other conditions.

9.8.4 ANO-14 Vol-I recommends the provision of taxi- holding position lights (sometimes referred to as runway protection lights) which consist of two alternate flashing yellow lights. At present, these lights are only recommended for a precision approach runway Category III, but consideration is being given to recommending their provision at precision approach Category II runways. Nevertheless, the installation of these lights at all taxi holding positions regardless of the runway type should be seriously considered as they are a very effective and reasonably inexpensive method of delineating an active runway in all visibility conditions. A further method of safeguarding a runway is the installation of switchable stop bars as described in ANO-14 Vol-I, Chapter 5, which are also a standard requirement for precision approach runways, Category III.

9.9 NON-VISUAL ELECTRONIC PROTECTION EQUIPMENT;

9.9.1 The problem of continuing aerodrome operation at an acceptable level of safety and capacity in reduced visibility has led to the development of many techniques for nonvisual surveillance. Many of these systems have been designed to monitor the whole of the movement area but can be scaled down to cover just the runway and its immediate environs where a more complex SMGC system cannot be justified. These techniques offer three basic forms of non-visual surveillance:

- the use of radar sensors which produce a facsimile display of the runway and the immediate taxiways together with the operating traffic;
- the use of linear sensors to monitor the entry and exit of traffic on defined divisions or blocks close to the runway, this being displayed on a suitable indicator; and
- the use of small area sensors to indicate the occupancy of sectors close to a Runway

9.9.2 RADAR SENSORS

The most widely used and, to date, the most successful method of non-visual surveillance is surface movement radar (SMR) which has been in operation since the early 1960s. Ideally, this presents the controller with a radar-derived plan of the aerodrome surface with the runways and taxiways clearly discernible, with the traffic, whether moving or stationary, shown as blips. This allows the controller, by monitoring a suitable display, to determine runway occupancy, taxiway movement, progress of vehicular traffic, etc.

i) The latest developments of this equipment have overcome the weather and attenuation problems which limited the effectiveness of earlier models and as a result of advances in electronics and display techniques are significantly cheaper than their predecessors. In addition, advances in computer technology, which have the capability of greatly enhancing basic radar information, allow for runway protection programmes to be designed that produce an audio alarm when the protected area of an active runway is intruded.

ii) Recent developments in millimeter and FM CW (frequency modulated continuous wave) radars may offer a cheaper alternative to SMR especially where a system is required only for runway protection. Portable L-Band FM CW radars are already available for intruder detection and these could be developed for specific use on an aerodrome, but many of these systems will only detect moving targets and will therefore require a certain amount of computer assistance to display continuous data to the controller.

9.9.3 LINEAR SENSORS.

i) Magnetic (Inductive) Loop Detectors — Inductive loop detectors have been used for road traffic detection and control for many years and such a system can be adapted for use as a runway protection aid. Inductive loops strategically placed along a taxiway access to a runway will detect traffic movement and this information can be displayed to the controller. The limiting factor of such a system is the cost, especially when fitted retrospectively to a large aerodrome where the data transmission and display system could be complicated. An aerodrome lighting system incorporating inductive loops, which are used for runway protection and the automatic switching of stop bars and taxiway lights, has been installed at Frankfurt Airport and is an integral part of the SMGC system.

ii) Electro-magnetic beams — Electronic fencing using microwave techniques is feasible as a runway protection aid but indications are that to cover an area the size of a runway could prove to be expensive in basic and data distribution equipment.

9.9.4 SMALL AREA SENSORS AND CCTV.

These can be used to survey a particular area such as a runway holding point. Methods available include small CCTV cameras, specialized radars, magnetometers, ultrasonic,

infra- red, lasers and seismic sensors. A combination of the above methods could provide an effective runway protection aid but may prove to be complex and expensive.

9.9.5 SUMMARY

In order to achieve a high degree of runway safety, aerodrome operators and responsible authorities must ensure that:

- the movement area is fenced or otherwise protected against unauthorized entry;
- > all entry points to the movement area are controlled:
- there is an adequate level of knowledge, competence and discipline among those in charge of authorized traffic on the movement area;

9.9.5.1 all taxiways an systems are adequately and appropriately signposted, marked and lighted

9.9.5.2	an active runway is clearly and unmistakably marked as such to surface traffic;
9.9.5.3	all manoeuvring area traffic conforms to recognized RTF procedures;
9.9.5.4	where possible, a verbal clearance to enter a runway is confirmed by a visual signal, e.g. suppression of the stop bar and illumination of taxiway centre line lights; and

9.9.5.5 where visibility, aerodrome complexity and traffic density demand, provisiois made for non-visual electronic protection equipment such as surface movement radar (SMR).

Chapter 10

APRON MANAGEMENT SERVICE

10.1 GENERAL

10.1.1 The air traffic control service at an aerodrome extends throughout the manoeuvring area, but no specific instructions relating to such a service cover the apron. Therefore apron management is required to regulate the activities and movement of aircraft, vehicles and personnel on the apron ANO-14 Vol-I; Section 9.8.

10.1.2 There are a variety of different approaches to apron management which have been developed and which can, depending on the particular condition, accommodate the requirements of the aerodrome.

10.1.3 Apron management is an essential task at any aerodrome. However, the need to establish a dedicated apron management service is dependent upon three main operational factors. They are:

- \succ the traffic density;
- ➤ the complexity of the apron layout; and
- the visibility conditions under which the aerodrome authority plans to maintain operations.

10.1.4 Generally, it is not practicable to exercise total control over all traffic on the movement area However, in very poor visibility conditions it may be necessary to exercise such a control at the expense of capacity. Within the field of reasonable constraint which varies according to conditions, safety and expedition depend upon aircraft and vehicles con forming to standard ground movement rules and regulations. The apron management must establish rules related to the operation of aircraft and ground vehicles on the aprons. These rules should be compatible with those for the manoeuvring area.

10.1.5 ANO-14 Vol-I, Section 9.3, recommends that an apron management service be provided when warranted by the volume of traffic and operating conditions. Guidance on apron management and safety is given in the Airport Services Manual, Part 8, Chapter 10.

10.1.6 It is not possible to define at what levels of traffic volume and under what operating conditions an apron management service should be established. Generally speaking the more complex the apron layout the more comprehensive an apron management service needs to be, particularly when taxiways are included in the apron area.

10.1.7 Most aerodromes will already have some form of apron management. This may simply be an area set aside for the parking of aircraft, with painted lines to guide pilots to self manoeuvring aircraft stands. At the other end of the scale the apron area may be a large part of the movement area with numerous nose-in stands, several terminals and complex taxiways forming part of the layout. A complex apron area such as this will need a comprehensive apron management service including radio communication facilities.

10.1.8 Aerodrome operators must therefore consider what scope of management is needed for the activity on their apron areas to ensure the safe and efficient operation of aircraft and vehicles in close proximity. This is particularly important where low visibility operations are contemplated.

- 10.1.9 When considering what scope of management may be needed on an apron area, the following points should be considered:
 - ➢ Is the apron area sufficiently large, complex or busy to merit a separate staff to manage it?
 - What RTF facilities do the staff need to exercise control over their own vehicles, airline vehicles and, if necessary, over aircraft using apron taxiways?
 - If apron management staff are required to exercise control over aircraft and vehicles on the apron area to ensure safe separation, then such staff should be properly trained and licensed and their legal authority clearly established.
 - ➤ Will the apron management service issue its own instructions such as start up, push back, taxi clearances, and stand allocation or will these be given by the ATS unit as an element of the apron management service?
 - How will the various airline service vehicles be regulated on the apron as well as on airside roads serving aircraft stands? Is there a need for roads, controlled or uncontrolled, crossing apron taxiways?

- ➢ Who will be responsible for inspection, maintenance and cleanliness of the aprons?
- What size marshalling service, including leader van service (follow-me vehicles), is required to meet aircraft parking needs?
- Are low visibility operations contemplated at the aerodrome?
 If so what procedures need to be developed to ensure safety on the apron area?
- Are there procedures to cater for contingencies such as accidents, emergencies, snow clearance, diversion aircraft, flow control when the stands are nearly all occupied, maintenance work, stand cleaning and security?

10.2 WHO OPERATES THE APRON MANAGEMENT SERVICE?

10.2.1 Apron management services may be provided by the air traffic service unit, by a unit set up by the aerodrome operator authority, by the operator in the case of a company terminal, or by coordinated control between ATS and the aerodrome authority operator or operating company.

10.2.2 Some States have found that a preferred system of operating aprons has been to set up a traffic management control procedure in which a single unit takes over the responsibility for aircraft and vehicles at a pre-determined handover point between the apron and the manoeuvring area. Generally, the edge of the manoeuvring area represents the handover point. In any event, the handover point should be clearly indicated on the ground and on appropriate charts, for example the aerodrome chart, for the benefit of aircraft/vehicle operators. The apron management unit will then assume responsibilities for managing and coordinating all aircraft traffic on the apron, issuing verbal instructions on an agreed radio frequency, and managing all apron vehicle traffic and other apron activities in order to advise aircraft of potential hazards within the apron area. By arrangement with the aerodrome ATS unit, start- up and taxi clearance to the handover point will be given to departing aircraft where the ATS unit assumes responsibility.

10.2.3 One form of the coordinated apron management service is where radio communication with aircraft requiring start-up or push-back clearance on the apron is vested in the air traffic service unit, and the control of vehicles is the responsibility of the aerodrome authority or the operator. At these aerodromes, ATS instructions to aircraft are

given on the understanding that safe separation between the aircraft and vehicles not under radio control is not included in the instruction.

10.2.4 The apron management service maintains close communication with the aerodrome control service and is responsible for aircraft stand allocation, dissemination of movement information to aircraft operators by monitoring ATC frequencies, and by updating basic information continuously on aircraft arrival times, landings and take- offs. The apron management service should ensure that the apron area is kept clean by airport maintenance and that established aircraft clearance distances are available at the aircraft stand. A marshalling service and a leader van (follow-me vehicle) service may also be provided.

10.3 RESPONSIBILITIES AND FUNCTIONS

10.3.1 Whichever method of operating an apron management service is provided, the need for close liaison between the aerodrome authority, aircraft operator and ATS is paramount. The operational efficiency and safety of the system depends very largely on this close co-operation. The following items are of importance to both ATS and the aerodrome operator authority:

a) AIRCRAFT STAND ALLOCATION

Over-all responsibility for aircraft stand allocation is normally retained by the aerodrome operator although for operational convenience and efficiency a system of preferred user stands may be established. Instructions should clearly state which stands may be used by which aircraft or groups of aircraft. Where considered desirable, a preferred order of use of stands should be laid down. Apron management staff should be given clear guidance on the stand occupancy times to be permitted and the steps to be taken to achieve compliance with the rules. The responsibility for stand allocation may be delegated to an airline where that airline has a dedicated terminal or apron area.

b) AIRCRAFT ARRIVAL/DEPARTURE TIMES

Foreknowledge of arrival and departure times scheduled, estimated and actual is required by ATS, apron management, terminal management and the operators. A system should be established to ensure that this information is passed between all interested parties as quickly and efficiently as possible.

c) START-UP CLEARANCES

Normally these are given by the ATC unit. Where an apron management service operates its own radio communication on the apron area procedures will need to be established between the apron management service and the ATC unit to ensure the efficient co-ordination and delivery of such clearances.

d) DISSEMINATION OF INFORMATION TO OPERATORS

e) A system should be established to ensure the efficient distribution of relevant information between apron management, ATS and operators. Such information could include notification of work in progress, non-availability of facilities, snow clearance plans and low visibility procedures.

f) SECURITY ARRANGEMENTS

In addition to normal security arrangements there are security requirements which are of interest to many parties who operate on the apron. These would include contingency plans for such eventualities as baggage identification on the stand, bomb warnings and hijack threats.

g) AVAILABILITY OF SAFETY SERVICES

The rescue and fire fighting services (RFF) are normally alerted to an incident on the movement area by ATS. However, at aerodromes where aircraft on the apron area are controlled by the apron management service, a communication system needs to be established to alert the RFF when an incident occurs in the apron area of responsibility.

h) APRON DISCIPLINE

The apron management service will be responsible for ensuring compliance by all parties with regulations relating to the apron.

10.3.2 AIRCRAFT PARKING/DOCKING GUIDANCE SYSTEM

The apron guidance system provided will depend upon the accuracy of parking required and the types of aircraft operating on the apron. The simplest form of stand guidance, where precise accuracy is not required, will comprise stand identification and centre line paint markings. Guidance on apron markings is given in the Aerodrome Design Manual, Part 4. The apron management service should monitor all paint markings to ensure that they are maintained in a clean condition to retain maximum visibility. Where more accurate parking/docking is required then one of the guidance systems conforming to the specifications in ANO-14 Vol-I, Chapter 5 must be installed. Details of these systems are given in the Aerodrome Design Manual, Part 4, Chapter 12. The apron management service should monitor these systems and associated guidance lights to ensure that they are inspected at least weekly to maintain high standards of serviceability.

10.3.3 MARSHALLING SERVICE

An aerodrome marshalling service should be provided where parking or docking guidance systems do not exist or are unserviceable or where guidance to aircraft parking is required to avoid a safety hazard and to make the most efficient use of available parking space. Proper training arrangements should exist for marshallers and only those who have demonstrated satisfactory competence should be permitted to marshal aircraft. Where aerodrome marshalling is provided, comprehensive instructions should be written for marshallers including:

a)	the absolute necessity for using only authorized signals
	(copies of these should be displayed at suitable points);
b)	the need to ensure that prior to using the authorized signals the marshaller shall ascertain that the area within which an aircraft is to be guided/ parked is clear of objects which the aircraft, in complying with his signals, might otherwise strike;
c)	the circumstances in which one marshaller may be used and the occasions when wing walkers are necessary;
d)	the action to be taken in the event of an emergency or incident involving an aircraft and/or vehicle occurring during marshalling, e.g. collision, fire, fuel spillage;
e)	the need to wear a distinctive jacket at all times. This jacket can be of the waistcoat variety colored day-glow red, reflective orange, or reflective yellow; and
f)	the action to be taken when re-positioning of aircraft is to be carried out by tractor and signaling is necessary to close down engines.

Chapter 11 TRAINING

The area most commonly over looked in many systems is training. For an SMGC system to function correctly, all personnel responsible for implementing part or all of the system must be trained, monitored and practiced in the performance of assigned duties. Training as it applies to SMGC systems is covered in this chapter.

11.1 The training of personnel authorized to operate on the movement area or involved in the provision of the SMGC system, is the responsibility of the Aerodrome Operator and/or appropriate authority. Training falls into two main categories: initial and recurrent or proficiency training.

- 11.2 Initial training is provided to all of new employees and newcomers to a specific unit. It normally covers but is not limited to:
 - RTF procedures
 - ➤ aerodrome layout
 - > aerodrome procedures
 - ➤ aerodrome emergency procedures
 - ➤ aerodrome low visibility procedures
 - ➤ aerodrome special procedures
 - ➢ aircraft recognition
 - ➤ vehicle operating procedures.

11.3 The functions of the apron management service require that its staff be appropriately trained and authorized to carry out their respective responsibilities. This applies particularly to those responsible for the operation of an apron management centre or tower, to marshallers and to leader van (follow-me vehicle) operators.

11.4 Staff operating an apron management centre or tower have the responsibility for managing and, at some aerodromes, controlling aircraft movement within their area of responsibility. To a considerable extent their function is similar to that of ATC control on the manoeuvring area and similar training of staff is required. Among the issues addressed by a training programme will be:

➤-ATS unit/apron management co-ordination;

- ➤ start-up procedures;
- ▶ push-back procedures;
- ➤ gate holding procedures;
- ➢ taxi clearances; and
- \triangleright en-route clearances.

11.5 To satisfy training requirements for apron management operating staff, common training programme may be developed for ATS staff and apron management staff.

11.6 Aircraft marshallers require training to ensure that they are properly qualified to direct aircraft movements. Their training should focus on:

a) signaling;

b) aircraft characteristics, both physical and operating, that relate to manoeuvring of aircraft within the confines of the apron; and

c) personal safety around aircraft and particularly engines.

11.7 At aerodromes where leader vans ("follow me" vehicles) are in use, procedures should be developed to ensure that drivers are suitably qualified in RTF procedures, know visual signals and have a suitable knowledge of taxiing speeds and correct aircraft/vehicle spacing. A thorough knowledge of the aerodrome layout with an ability to find one's way in low visibility is:

- > aircraft characteristics, both physical and operating, that relate to manoeuvring of aircraft within the confines of the apron; and
- > personal safety around aircraft and particularly engines.

11.8 **Operators of vehicles**

The authorities responsible for the operation of vehicles on the movement area should ensure that the operators are properly qualified. This may include, as appropriate to the driver's function, knowledge of:

- a) the geography of the aerodrome;
- b) aerodrome signs, markings and lights;
- c) radiotelephone operating procedures;
- d) terms and phrases used in aerodrome control including the ICAO spelling alphabet;
- e) rules of air traffic services as they relate to ground operations;

12 June 2024

f) airport rules and procedures; and

g) specialist functions as required, for example, in rescue and firefighting.

11.9 The operator should be able to demonstrate competency, as appropriate, in:

a) the operation or use of vehicle transmit/receive equipment;

b) understanding and complying with air traffic control and local procedures;

c) vehicle navigation on the aerodrome; and

d) special skills required for the particular function.

In addition, as required for any specialist function, the operator should be the holder of a State driver's licence.

11.10 The above should be applied as is appropriate to the function to be performed by the operator, and it is not necessary that all operators be trained to the same level, for example, operators whose functions are restricted to the apron.

11.11 If special procedures apply for operations in low visibility conditions, it is desirable to verify an operator's knowledge of the procedures through periodic checks.

11.12 Recurrent or proficiency training should not be overlooked. When dealing with low visibility operations, this training may be critical since the exposure to low visibility procedures is limited due to one or both of the following:

- the infrequent occurrence and short duration of low visibility conditions; and
- > individual shift rotation or extended absence from duty for whatever reason.

11.13 It is suggested that appropriate recurrent training be given preferably every six months. Such training can take different forms depending on the degree of involvement of the staff member. It should be designed keeping in mind the safety of aircraft and the effect of misapplication of an aerodrome procedure.

Chapter 12

MISCLLANEOUS

12.1 The level of the SMGC system that is provided at an aerodrome should be related to the operational conditions under which it is intended that the system shall operate. It is important to recognize that a complex SMGC system is not needed and is uneconomic at aerodromes where visibility, aerodrome layout complexity and traffic density, separately or in combination, do not at present cause problems for the ground movement operations of aircraft and vehicles. However, failure to provide an SMGC system with a capacity properly matched to the operational demands at an aerodrome will restrict the movement rate and may affect safety.

12.2 Guidance and control of the many vehicles that operate in stand areas present special problems in relation to the level of the SMGC system that is required. These can be dealt with by using the concept that the role of any particular stand changes with time. When an aircraft is stationary on a stand with engines running or an aircraft is moving on the stand or an aircraft is approaching the stand, then the stand is part of the movement area and appropriate SMGC system provisions are required. If a stand is occupied but the aircraft engines are not running or if the stand is vacant and not being approached by an aircraft, then the stand is not at that time part of the movement area, and SMGC system provisions are not required.

12.3 The tendency in A-SMCGS implementation is towards a reduction in the voice communications workload, an increase in the use of surface guidance aids and a greater reliance on avionics in the cockpit to help guide the pilot to and from the runway. ATC surveillance of aircraft and vehicles will make greater use of electronic aids, and automation will play an increasing role in the monitoring of the dynamics of surface operations.

APPENDIX A. FURTHER INFORMATION ON VISUAL AIDS¹

1. MARKING AIDS

- 1.1 *Taxiway centre line marking* This marking consists of a continuous yellow line extending from the runway to the aircraft stand. Although termed centre line, the marking really denotes the path over which the cockpit of the aircraft should pass in order for the aircraft landing gear to remain on a paved surface.
- 1.2 *Taxi holding position marking* The purpose of this marking is to identify the point at which an aircraft should hold at a taxiway/runway intersection so as not to be an obstacle to aircraft operating on the runway or to interfere with the operation of the ILS. When operations on the runway are conducted in different visibility conditions, more than one hold line may be required at each intersection of a taxiway with the runway.
- 1.3 *Taxiway intersection marking* The purpose of this marking is to identify the point at which an aircraft must hold at a taxiway/taxiway intersection in order to be clear of other aircraft passing in front of the holding aircraft on a crossing taxiway.
- 1.4 *Aircraft stand markings* This term is used to refer to a number of different markings used to provide guidance to a pilot manoeuvring his aircraft on an aircraft stand. They provide alignment guidance onto the stand, indicate the stopping position and alignment guidance from the stand.
- 1.5 *Apron safety lines* This term is used to refer to those markings on an apron that are intended to provide guidance to vehicles other than aircraft; for example, wing tip clearance lines, service roads and parking areas for ground vehicles. Their purpose is to control where ground equipment and vehicles go in order to prevent them being obstacles to aircraft.

2. LIGHTING AIDS

2.1 *Taxiway centre line lights-* These green lights are located along the taxiway centre line marking. Consideration is now being given to coding exit taxiway centre line lights to indicate to a pilot when he is clear of the runway. Alternate lights are intended to be coded green and yellow from the beginning of the exit taxiway lighting near the runway centre line up to the edge of the ILS critical sensitive area or the lower edge of the inner transitional surface. Taxiway centre line lights are a particular requirement for low visibility operations when taxiway edge lights provide inadequate guidance because they cannot be so readily seen from the cockpit. These lights are available in different

intensities for use in different visibility conditions. Taxiway centre line lights may be selectively switched on or off to identify the route a pilot should take to reach his destination on the ground.

- 2.2 *Taxiway edge lights-* These lights are installed along the edges of taxiways and aprons. Their purpose is to identify the lateral limits of the paved areas and thereby prevent aircraft from taxiing off the pavement.
- 2.3 Taxi-holding position lights- This aid consists of two alternately illuminated yellow

lights. A pair of such lights is located at each side of a taxi-holding position. They are operated only when a runway is being used for landing or take-off and are intended to provide a distinctive warning to anyone approaching the taxi-holding position that they are about to encroach upon an active runway.

¹ (<u>Note:</u> Visual aids for navigation are specified in ANO 14 Vol-1, Chapter 5)

- 2.4 *Stop bars* A stop bar consists of a series of red lights perpendicular to the taxiway centre line at the point where it is desired that an aircraft stop. In general, its location coincides with that of the taxiway holding position marking. The lights are operated by air traffic control to indicate when an aircraft should stop and when it should proceed. This is particularly useful when used in conjunction with selectively switchable taxiway centre line lights.
- 2.5 *Visual docking guidance systems* These systems are intended to provide precise alignment and stopping information to an aircraft entering an aircraft stand.
- 2.6 *Runway clearance aid* At present the only aid under consideration to provide runway clearance information is colour coded taxiway centre line lights; see taxiway centre line lights above.

3. SIGNS

3.1 Signs are of two basic types: mandatory instruction signs and information signs.

3.1.1 *Mandatory instruction signs*- Red signs with white inscriptions used to convey an instruction which is to be carried out unless advised otherwise by ATS. Examples include:

- Stop sign
- "No entry" sign
- Holding position (Categories I, II or III) sign

3.1.2 *Information signs*- Either black signs with yellow inscriptions or yellow signs with black inscriptions used to indicate a specific location or destination or to provide other information.

3.1.3 In general, signs should meet the requirements in ANO 14 Vol-I, Chapter 5 and the Aerodrome Design Manual, Part 4, Chapter 11. More importantly, signs should be uniform throughout an aerodrome, self-evident (unambiguous) and simple, and located with due regard to the speed and characteristics of taxiing aircraft (e.g. height of the cockpit, location and height of jet pods) and the need to give information to pilots in sufficient time for it to be correlated when necessary with that on the aerodrome chart.

APPENDIX B.Traffic Rules and Regulations for Surface Vehicles

Rules for the regulation of aircraft movements on the ground are contained in ICAO Annex 2 and ICAO Doc 4444, but equivalent rules for use by ground vehicles also need to be provided and enforced.

Except in very poor visibility conditions when special low visibility s procedures should apply (refer Chapter 5), it is not always practicable to exercise total control over all traffic on parts of the movement area such as the apron. Within the field of reasonable constraint according to conditions authorized in other parts of this manual, safety and expedition depends upon aircraft and vehicles conforming to standard ground movement rules and regulations. Appropriate authorities should establish suitable rules related to the operation of aircraft and ground vehicles on the movement area.

The rules and regulations for the ground movement of vehicles should encompass at least the following points.

1. General

The movement area should be fenced or otherwise protected against unauthorized entry and should be provided with controlled entry points. Only vehicles and/or equipment which have a specific and necessary function to perform in connexion with aircraft or aerodrome facilities should be granted admission to the movement area. Authorized drivers should carry a pass. Vehicles cleared for entry should clearly be identified as authorized to be there by having an approved identification token prominently displayed.

2. Requirements for authorized vehicles and/or equipment operators

2.1. A vehicle operator shall:

- a) be knowledgeable of local rules and regulations or be escorted by a person who is conversant with them;
- b) be capable of distinguishing between visual signals;
- c) give way to aircraft at all times;
- d) obtain ATS clearance prior to entering the manoeuvring area and comply with the terms and limitations of the clearance;
- e) follow specified routes and guide lines and not encroach upon safety lines;
- f) approach aircraft with utmost care, particularly if aircraft engines are running and/or anti-collision lights are operating;
- g) obey movement area speed restrictions;
- h) where appropriate, be experienced in the operation of RTF equipment and capable of correctly reacting to RTF messages;
- i) where appropriate, maintain a continuous listening watch on the ground movement control radio channel, requesting ATS clearance as required by aerodrome regulations and complying with ATS instructions; and
- j) be familiar with the aerodrome layout and the signs and signals used on the aerodrome.
- 2.2. A vehicle operator SHALL NOT:
 - a) position a vehicle so as to interfere with the movement of aircraft;
 - b) pass close behind an aircraft if its engines are running and its anti-collision lights operating, or position a vehicle in a jet blast or propeller slipstream;
 - c) cross traffic control signals, stop bars or markings without appropriate authorization;
 - d) leave a vehicle unattended where it may create a hazard; and
 - e) operate a vehicle during the hours of darkness or periods of restricted visibility unless it is equipped with suitable lighting.
- 3. Requirements for vehicles and/or equipment

Vehicles and equipment shall be:

- a) marked and lighted as per ANO 14 Vol-I, Chapter 6; and
- b) fitted with front and rear lights in accordance with local regulations if operated during the hours of darkness or during periods of restricted visibility.
- c) Trailer trains must not exceed the length specified by the aerodrome authority and

must have adequate braking systems. They must carry red reflectors at the rear and along the sides as appropriate if used in low visibility or at night.

APPENDIX C.SURFACE MOVEMENT RADAR (SMR)

1. INTRODUCTION

- 1.1 The purpose of providing SMR is to aid the air traffic services in achieving their objectives as defined in Annex 11. These objectives are:
 - a) to prevent collisions between aircraft;
 - b) to prevent collisions between aircraft on the maneuvering areas and obstructions in those areas;
 - c) to expedite and maintain an orderly flow of traffic;
 - d) to provide advice and information useful for the safe and efficient conduct of flight; and
 - e) to notify appropriate organizations regarding aircraft in need of search and rescue aid, and assist such organizations as required.
- 1.2 At an aerodrome adequately equipped with visual aids, the provision of aerodrome surface movement radar can make a valuable contribution to the safety and efficiency of ground movement control in reduced visibility and at night. Surface movement radar permits a continuous check on runway occupancy and taxiway usage, allows rapid determination of lighting control requirements and facilitates clearances for aircraft and vehicles. In emergencies it can play a part in the expeditious movement of emergency vehicles and the safe disposition of other traffic.

2. USE OF SMR

- 2.1 As described in the Air Traffic Services Planning Manual (Doc 9426), Part II, Section 5-4.3.2, SMR may be used to perform the following functions specifically related to the provision of aerodrome control service:
 - a) provide radar monitoring of traffic on the maneuvering area;
 - b) provide routing instructions to surface traffic, using the radar-displayed information, to avoid points of traffic congestion and select aircraft routes to maintain traffic flow;
 - c) permit issuance of instructions to hold short at intersections to avoid traffic conflicts;
 - d) provide information that a runway is clear of other traffic, particularly in periods of low

visibility;

- e) provide assistance in timing of runway operations to improve runway utilization while avoiding conflicts with departing and arriving aircraft;
- f) provide, on request, guidance information to an aircraft uncertain of its position; and
- g) provide guidance information to emergency vehicles.
- 2.2 In developing the performance objectives that follow, SMR is considered as a surveillance element of SMGCS; however, its use can be expanded to a more active role.

3. PURPOSE OF THE PERFORMANCE OBJECTIVES

3.1 The purpose behind the performance objectives that follow is to broadly identify the factors that may need to be considered when developing procurement technical specifications for SMR. When using these performance objectives, it should be noted that several factors, including the layout, capability for automatic recording of radar data, variable magnification zoom facility, computer-generated display and complexity of the aerodrome and operating conditions, influence the design of a particular SMR system. Accordingly, these performance objectives should be reviewed and adapted as necessary taking into account the particular requirements of the aerodrome concerned.

.....END.....